强激光与粒子束, 2017, 29 (6): 063002, 网络出版: 2017-06-21  

时变等离子体高功率微波频率上转换的粒子模拟

Particle-in-cell simulation for frequency up-conversion of high-power microwave in time-varying plasma
作者单位
西安交通大学 电子物理与器件教育部重点实验室, 西安 710049
摘要
基于电磁波与时变介质相互作用能够实现电磁波频率上转换的原理, 通过粒子模拟(PIC)方法对电磁波与时变等离子体薄层相互作用进行模拟, 实现了频率由2.45 GHz提升至130 GHz, 功率转化效率约为0.39%。探究了等离子体参数(包括等离子体密度、有限的等离子体上升时间以及等离子体薄层厚度)对频率上转换的影响。模拟结果验证了等离子体密度决定上转换频率, 与理论结果相符。模拟结果表明, 等离子体薄层厚度越大, 得到的上转换波的能量越大; 等离子体的上升时间越小, 上转换波的转换效率和频谱纯度越高。采用等离子体密度2×1020 cm-3, 等离子体厚度1 cm, 等离子体上升时间0.04 ns 可以得到可观的130 GHz上转换波输出。
Abstract
The frequency up-conversion of an electromagnetic wave in a time-varying plasma has been simulated in this paper with particle-in-cell (PIC) method, and it transformed a 2.45 GHz source radiation into a 130 GHz radiation with the power conversion efficiency of around 0.39%. We also studied the effects of the plasma parameters including the plasma density, the finite rise time of ionization and the width of plasma slab. It is concluded that the frequency up-conversion of the output wave was mainly affected by the plasma density, which was consistent with the theoretical results. In addition, the simulation showed that the energy of the output wave would be lager with the increase of the width of plasma slab, and the conversion efficiency of the output wave and spectrum were much better when the plasma rise time was shorter. A considerable 130 GHz radiation could be obtained with the plasma density of 2×1020cm-3, the plasma thickness of 1 cm, and the plasma rise time of 0.04 ns.
参考文献

[1] Kalluri D K. Electromagnetics of time varying complex media: Frequency and polarization transformer[M]. 2nd ed. Boca Raton: CRC Press, 2010.

[2] Felsen L, Whitman G M. Wave propagation in time-varying media[J]. IEEE Trans Antennas & Propagation,1970, 18(2): 242-253.

[3] Kuo S P, Ren A. Experimental study of wave propagation through a rapidly created plasma[J]. IEEE Trans Plasma Science, 1993, 21(1): 53-56.

[4] Lampe M, Ott E, Walker J H. Interaction of electromagnetic waves with a moving ionization front[J]. Phys Fluids, 1977, 21(21): 42-54.

[5] Wilks S C, Dawson J M, Mori W B. Frequency up-conversion of electromagnetic radiation with use of an overdense plasma[J]. Physical Review Letters, 1988, 61(3): 337-340.

[6] Kuo S P. Frequency up-conversion of microwave pulse in a rapidly growing plasma[C]// IEEE International Conference on Plasma Science. 1990: 1000-1003.

[7] Kalluri D K, Eker S, Ehsan M M. Frequency transformation of a whistler wave by a collapsing plasma medium in a cavity: FDTD solution[J]. IEEE Trans Antennas & Propagation, 2009, 57(7): 1921-1930.

[8] Kalluri D K, Lade R K. Frequency and polarization transformer (10 GHz to 1000 GHz): Interaction of a whistler wave with a collapsing plasma in a cavity[J]. IEEE Trans Plasma Science, 2012, 40(11): 3070-3078.

[9] Kalluri D K, Khalifeh A F, Eker S. Frequency and polarization transformer: Transverse modes: I Zero rise time[J]. IEEE Trans Antennas & Propagation, 2007, 55(6): 1789-1796.

[10] Kalluri D K, Lee J H, Ehsan M M. FDTD simulation of electromagnetic pulse interaction with a switched plasma slab[J]. International Journal of Infrared & Millimeter Waves, 2003, 24(3): 349-365.

[11] 曹莉华, 常铁强. 超强激光等离子体中J×B加热的二维粒子模拟[J]. 强激光与粒子束, 1998, 10(1): 80-83. (Cao Lihua, Chang Tieqiang. Particle simulation on J×B heating by untrapowerful laser. High Power Laser and Particle Beams, 1998, 10(1): 80-83)

[12] 马燕云, 常文蔚, 银燕,等. 激光导致等离子体空泡及高速离子产生的粒子模拟研究[J]. 高压物理学报, 2002, 16(2): 147-151. (Ma Yanyun, Chang Wenyu, Yin Yan, et al. Particle simulation of laser induced plasma vacuolization and high-speed ion generation. Chinese Journal of High Pressure Physics, 2002, 16(2): 147-151)

[13] Li Yongdong, He Feng, Liu Chunliang. A volume-weighting cloud-in-cell model for simulation of axial symmetrical plasmas[J]. Plasma Science and Technology, 2005, 7(1): 2653-2656.

[14] 李永东, 王洪广, 刘纯亮. 一种补偿时间步长限制的粒子模拟-蒙特卡罗碰撞模型[J]. 强激光与粒子束, 2009, 21(11): 1741-1744. (Li Yongdong, Wang Hongguang, Liu Chunliang. Compensated particle in cell: Monte Carlo collision model with wide time step limit. High Power Laser and Particle Beams, 2009, 21(11): 1741-1744)

[15] 李永东, 王洪广, 刘纯亮,等. 高功率微波器件2.5维通用粒子模拟软件--尤普[J]. 强激光与粒子束, 2009, 21(12): 1866-1870. (Li Yongdong, Wang Hongguang, Liu Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code-UNIPIC for high power microwave simulation. High Power Laser and Particle Beams, 2009, 21(12): 1866-1870)

高明珠, 陈坤, 常超, 刘纯亮. 时变等离子体高功率微波频率上转换的粒子模拟[J]. 强激光与粒子束, 2017, 29(6): 063002. Gao Mingzhu, Chen Kun, Chang Chao, Liu Chunliang. Particle-in-cell simulation for frequency up-conversion of high-power microwave in time-varying plasma[J]. High Power Laser and Particle Beams, 2017, 29(6): 063002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!