激光与光电子学进展, 2019, 56 (20): 202404, 网络出版: 2019-10-22  

光纤端的等离激元探测技术 下载: 2836次特邀综述

Plasmonic Sensing on Fiber Tip
作者单位
上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
引用该论文

杨天, 陈成, 王晓丹, 周鑫, 雷泽雨. 光纤端的等离激元探测技术[J]. 激光与光电子学进展, 2019, 56(20): 202404.

Tian Yang, Cheng Chen, Xiaodan Wang, Xin Zhou, Zeyu Lei. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404.

参考文献

[1] Institute[\s]{1}ofPhysics.[\s]{1}The[\s]{1}health[\s]{1}of[\s]{1}photonics:[\s]{1}how[\s]{1}light-based[\s]{1}technologies[\s]{1}are[\s]{1}solving[\s]{1}industry[\s]{1}challenges,[\s]{1}and[\s]{1}how[\s]{1}they[\s]{1}can[\s]{1}be[\s]{1}harnessed[\s]{1}to[\s]{1}impact[\s]{1}future[\s]{1}economic[\s]{1}growth[R].[\s]{1}UK:[\s]{1}IOP,[\s]{1}2018.[\s]{1}

[2] Andrade[\s]{1}G[\s]{1}FS,[\s]{1}Brolo[\s]{1}AG.[\s]{1}Nanoplasmonic[\s]{1}structures[\s]{1}in[\s]{1}optical[\s]{1}fibers[M][\s]{1}∥Dmitriev[\s]{1}A.[\s]{1}Nanoplasmonic[\s]{1}sensors.[\s]{1}Integrated[\s]{1}analytical[\s]{1}systems.[\s]{1}New[\s]{1}York,[\s]{1}NY:[\s]{1}Springer,[\s]{1}2012:[\s]{1}289-[\s]{1}315.[\s]{1}

[3] Kostovski G, Stoddart P R, Mitchell A. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies[J]. Advanced Materials, 2014, 26(23): 3798-3820.

[4] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883-3897.

[5] Vaiano P, Carotenuto B, Pisco M, et al. Lab on fiber technology for biological sensing applications[J]. Laser & Photonics Reviews, 2016, 10(6): 922-961.

[6] 刘飞飞, 张新平. 光纤端面集成金属光子结构传感器[J]. 激光与光电子学进展, 2017, 54(2): 020001.

    Liu F F, Zhang X P. Sensors based on metallic photonic structures integrated onto end facets of fibers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020001.

[7] Yang T, He X L, Zhou X, et al. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection[J]. Optics & Laser Technology, 2018, 101: 468-478.

[8] Xu Y, Bai P, Zhou X D, et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth[J]. Advanced Optical Materials, 2019, 7(9): 1801433.

[9] Dhawan A, Muth J F, Leonard D N, et al. Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(6): 2168-2173.

[10] Smythe E J, Dickey M D, Whitesides G M, et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces[J]. ACS Nano, 2009, 3(1): 59-65.

[11] Smythe E J, Dickey M D, Bao J M, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

[12] Lipomi D J, Martinez R V, Kats M A, et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving[J]. Nano Letters, 2011, 11(2): 632-636.

[13] Lin Y B, Zou Y, Lindquist R G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing[J]. Biomedical Optics Express, 2011, 2(3): 478-484.

[14] Feng S F, Zhang X P, Wang H, et al. Fiber coupled waveguide grating structures[J]. Applied Physics Letters, 2010, 96(13): 133101.

[15] Feng S F, Darmawi S, Henning T, et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber[J]. Small, 2012, 8(12): 1937-1944.

[16] Nguyen H, Sidiroglou F, Collins S F, et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures[J]. Applied Physics Letters, 2013, 103(19): 193116.

[17] Andrade G F S, Hayashi J G, Rahman M M, et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips[J]. Plasmonics, 2013, 8(2): 1113-1121.

[18] Micco A, Ricciardi A, Pisco M, et al. Optical fiber tip templating using direct focused ion beam milling[J]. Scientific Reports, 2015, 5: 15935.

[19] Principe M, Consales M, Micco A, et al. Optical fiber meta-tips[J]. Light: Science & Applications, 2017, 6(3): e16226.

[20] Scaravilli M, Micco A, Castaldi G, et al. Excitation of Bloch surface waves on an optical fiber tip[J]. Advanced Optical Materials, 2018, 6(19): 1800477.

[21] Liang Y Z, Zhang H, Zhu W Q, et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing[J]. ACS Sensors, 2017, 2(12): 1796-1804.

[22] Liang Y Z, Yu Z Y, Li L X, et al. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing[J]. Scientific Reports, 2019, 9: 7379.

[23] Liu Y, Guang J Y, Liu C, et al. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform[J]. Advanced Optical Materials, 2019, 7(19): 1900337.

[24] 杜怀超, 陈振宜, 陈娜, 等. 新型凹锥形表面增强拉曼散射光纤探针的制备[J]. 中国激光, 2017, 44(2): 0213001.

    Du H C, Chen Z Y, Chen N, et al. Fabrication of a novel concave cone surface-enhanced Raman scattering fiber probe[J]. Chinese Journal of Lasers, 2017, 44(2): 0213001.

[25] He X L, Yi H, Long J, et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing[J]. Applied Physics Letters, 2016, 108(23): 231105.

[26] White I M, Fan X D. On the performance quantification of resonant refractive index sensors[J]. Optics Express, 2008, 16(2): 1020-1028.

[27] Kim H M, Uh M, Jeong D H, et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 2019, 280: 183-191.

[28] Fan X D, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 2008, 620(1/2): 8-26.

[29] Lee B, Roh S, Park J. Current status of micro- and nano-structured optical fiber sensors[J]. Optical Fiber Technology, 2009, 15(3): 209-221.

[30] Slavík R, Homola J. tyrok J. Single-mode optical fiber surface plasmon resonance sensor[J]. Sensors and Actuators B: Chemical, 1999, 54(1/2): 74-79.

[31] Piliarik M, Homola J, Maníková Z, et al. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber[J]. Sensors and Actuators B: Chemical, 2003, 90(1/2/3): 236-242.

[32] Villatoro J, Monzón-Hernández D, Mejía E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors[J]. Applied Optics, 2003, 42(13): 2278-2283.

[33] Wu Y, Yao B C, Zhang A Q, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5): 1235-1237.

[34] Li D C, Wu J W, Wu P, et al. Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer[J]. Sensors and Actuators B: Chemical, 2015, 213: 295-304.

[35] Jauregui-Vazquez D, Haus J W. Negari A B H, et al. Bitapered fiber sensor: signal analysis[J]. Sensors and Actuators B: Chemical, 2015, 218: 105-110.

[36] Patnaik A, Senthilnathan K, Jha R. Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2437-2440.

[37] Shi S, Wang L B, Su R X, et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays[J]. Biosensors and Bioelectronics, 2015, 74: 454-460.

[38] Li L X, Liang Y Z, Liu Q, et al. Dual-channel fiber-optic biosensor for self-compensated refractive index measurement[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2110-2113.

[39] Lu[\s]{1}BY,[\s]{1}Lai[\s]{1}XC,[\s]{1}Zhang[\s]{1}PH,[\s]{1}et[\s]{1}al.[\s]{1}Roughened[\s]{1}cylindrical[\s]{1}gold[\s]{1}layer[\s]{1}with[\s]{1}curve[\s]{1}graphene[\s]{1}coating[\s]{1}for[\s]{1}enhanced[\s]{1}sensitivity[\s]{1}of[\s]{1}fiber[\s]{1}SPR[\s]{1}sensor[C]∥2017[\s]{1}19th[\s]{1}International[\s]{1}Conference[\s]{1}on[\s]{1}Solid-State[\s]{1}Sensors,[\s]{1}Actuators[\s]{1}and[\s]{1}Microsystems[\s]{1}(TRANSDUCERS),[\s]{1}June[\s]{1}18-22,[\s]{1}2017,[\s]{1}Kaohsiung,[\s]{1}Taiwan,[\s]{1}China.[\s]{1}New[\s]{1}York:[\s]{1}IEEE,[\s]{1}2017:[\s]{1}1991-[\s]{1}1994.[\s]{1}

[40] Kant R, Tabassum R, Gupta B D. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor[J]. Biosensors and Bioelectronics, 2018, 99: 637-645.

[41] Quero G, Consales M, Severino R, et al. Long period fiber grating nano-optrode for cancer biomarker detection[J]. Biosensors and Bioelectronics, 2016, 80: 590-600.

[42] Guo T, Liu F, Guan B O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 2016, 78: 19-33.

[43] 郭团. 等离子体共振光纤光栅生物传感器综述[J]. 光学学报, 2018, 38(3): 0328006.

    Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 2018, 38(3): 0328006.

[44] Lei Z Y, Zhou X, Yang J, et al. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing[J]. Applied Physics Letters, 2017, 110(17): 171107.

[45] Lei Z Y, Chen X, Wang X D, et al. Surface-emitting surface plasmon polariton laser in a second-order distributed feedback defect cavity[J]. ACS Photonics, 2019, 6(3): 612-619.

[46] Kim H T, Yu M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing[J]. Scientific Reports, 2019, 9: 1922.

[47] Zhang X P, Liu F F, Lin Y H. Direct transfer of metallic photonic structures onto end facets of optical fibers[J]. Frontiers in Physics, 2016, 4: 31.

[48] Jia P P, Yang Z L, Yang J, et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination[J]. ACS Sensors, 2016, 1(8): 1078-1083.

[49] Li S J, Li W D. Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet[J]. Optics Express, 2017, 25(23): 29380-29388.

[50] Wang T X, Cao R, Ning B, et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 2015, 107(15): 153702.

[51] Zhou X, Cai D, He X L, et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities[J]. Optics Letters, 2018, 43(4): 775-778.

[52] Ashkenazi S, Chao C Y, Guo L J, et al. Ultrasound detection using polymer microring optical resonator[J]. Applied Physics Letters, 2004, 85(22): 5418-5420.

[53] Huang S W, Chen S L, Ling T, et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 2008, 92(19): 193509.

[54] Zhang C, Ling T, Chen S L, et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 2014, 1(11): 1093-1098.

[55] Zhang C, Chen S L, Ling T, et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization[J]. IEEE Sensors Journal, 2015, 15(6): 3241-3248.

[56] Li H, Dong B Q, Zhang Z, et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy[J]. Scientific Reports, 2014, 4: 4496.

[57] Leinders S M, Westerveld W J, Pozo J, et al. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane[J]. Scientific Reports, 2015, 5: 14328.

[58] Zhang S L, Chen J, He S L. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor[J]. Optics Communications, 2017, 382: 113-118.

[59] Kim K H, Luo W, Zhang C, et al. Air-coupled ultrasound detection using capillary-based optical ring resonators[J]. Scientific Reports, 2017, 7: 109.

[60] Wei H M, Krishnaswamy S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection[J]. Optics Letters, 2017, 42(13): 2655-2658.

[61] Morris P, Hurrell A, Shaw A, et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 2009, 125(6): 3611-3622.

[62] Zhang E Z, Beard P C. A miniature all-optical photoacoustic imaging probe[J]. Proceedings of SPIE, 2011, 7899: 78991F.

[63] Allen T J, Zhang E, Beard P C. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor[J]. Proceedings of SPIE, 2015, 9323: 93230Z.

[64] Guggenheim J A, Li J, Allen T J, et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 2017, 11(11): 714-719.

[65] Wissmeyer G, Pleitez M A, Rosenthal A, et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 2018, 7(1): 53.

[66] RousselB,[\s]{1}CochardJ,[\s]{1}BouyeC.[\s]{1}Biophotonics[\s]{1}market:[\s]{1}technologies[\s]{1}and[\s]{1}market[\s]{1}analysis[R].[\s]{1}France:[\s]{1}European[\s]{1}Photonics[\s]{1}Industry[\s]{1}Consortium,Tematys[\s]{1}and[\s]{1}Yole[\s]{1}Développement,[\s]{1}2013.[\s]{1}

[67] MarketsandMarkets.[\s]{1}Label-free[\s]{1}detection[\s]{1}market[\s]{1}by[\s]{1}technology[\s]{1}(surface[\s]{1}plasmon[\s]{1}resonance,[\s]{1}bio-layer[\s]{1}interferometry),[\s]{1}products[\s]{1}(consumables,[\s]{1}microplates,[\s]{1}biosensor[\s]{1}chips),[\s]{1}applications[\s]{1}(binding[\s]{1}kinetics,[\s]{1}thermodynamics,[\s]{1}lead[\s]{1}generation),[\s]{1}end[\s]{1}user-global[\s]{1}forecast[\s]{1}to[\s]{1}2022[R].[\s]{1}Magarpatta[\s]{1}SEZ:[\s]{1}MarketsandMarkets[\s]{1}TM[\s]{1}Research[\s]{1}Private[\s]{1}Ltd.[\s]{1},[\s]{1}2017.[\s]{1}

[68] Thygesen K, Alpert J S, Jaffe A S, et al. Third universal definition of myocardial infarction[J]. European Heart Journal, 2012, 33(20): 2551-2567.

[69] Ansari R, Zhang E Z, Desjardins A E, et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 2018, 7(1): 75.

[70] Huynh[\s]{1}NT,[\s]{1}LuckaF,[\s]{1}Zhang[\s]{1}EZ,[\s]{1}et[\s]{1}al.[\s]{1}High[\s]{1}speed[\s]{1}multi-beam[\s]{1}Fabry-Perot[\s]{1}scanner[\s]{1}for[\s]{1}fast[\s]{1}high[\s]{1}resolution[\s]{1}photoacoustic[\s]{1}imaging[C]∥SPIE[\s]{1}Photonics[\s]{1}West[\s]{1}BIOS,[\s]{1}January[\s]{1}27-28,[\s]{1}2018,[\s]{1}San[\s]{1}Francisco,[\s]{1}USA.[\s]{1}USA:[\s]{1}SPIE,[\s]{1}2018:[\s]{1}10494-[\s]{1}107.[\s]{1}

[71] Guggenheim[\s]{1}JA,[\s]{1}Zhang[\s]{1}EZ,[\s]{1}Beard[\s]{1}PC.[\s]{1}Photoacoustic[\s]{1}imaging[\s]{1}with[\s]{1}highly[\s]{1}sensitive[\s]{1}2D[\s]{1}planoconcave[\s]{1}optical[\s]{1}microresonators[\s]{1}arrays[C]∥SPIE[\s]{1}Photonics[\s]{1}West[\s]{1}BIOS,[\s]{1}January[\s]{1}27-28,[\s]{1}2018,[\s]{1}San[\s]{1}Francisco,[\s]{1}USA.[\s]{1}USA:[\s]{1}SPIE,[\s]{1}2018:[\s]{1}10494-[\s]{1}68.[\s]{1}

[72] Schuller J A, Barnard E S, Cai W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

[73] Novotny L, van Hulst N. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-90.

[74] Cubukcu E, Kort E A, Crozier K B, et al. Plasmonic laser antenna[J]. Applied Physics Letters, 2006, 89(9): 093120.

[75] Ciracì C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074.

[76] Long J, Yi H, Li H Q, et al. Reproducible ultrahigh SERS enhancement in single deterministic hotspots using nanosphere-plane antennas under radially polarized excitation[J]. Scientific Reports, 2016, 6: 33218.

[77] Zhu W Q, Esteban R, Borisov A G, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7: 11495.

[78] Xu D, Xiong X, Wu L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics[J]. Advances in Optics and Photonics, 2018, 10(4): 703-756.

[79] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 2019, 18(7): 668-678.

[80] Jackman J A, Ferhan A R, Cho N J. Nanoplasmonic sensors for biointerfacial science[J]. Chemical Society Reviews, 2017, 46(12): 3615-3660.

[81] Sonnichsen C, Reinhard B M, Liphardt J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature Biotechnology, 2005, 23(6): 741-745.

[82] Liu G L, Yin Y D, Kunchakarra S, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting[J]. Nature Nanotechnology, 2006, 1(1): 47-52.

[83] Chen T H, Hong Y, Reinhard B M. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers[J]. Nano Letters, 2015, 15(8): 5349-5357.

[84] Camden J P, Dieringer J A, Wang Y M, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. Journal of the American Chemical Society, 2008, 130(38): 12616-12617.

[85] Wang D X, Zhu W Q, Best M D, et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas[J]. Nano Letters, 2013, 13(5): 2194-2198.

[86] Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1: 16021.

[87] Tang L, Kocabas S E, Latif S, et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nature Photonics, 2008, 2(4): 226-229.

[88] Miller D A B. Attojoule optoelectronics for low-energy information processing and communications[J]. Journal of Lightwave Technology, 2017, 35(3): 346-396.

[89] Ward D R, Hüser F, Pauly F, et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 2010, 5(10): 732-736.

[90] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

[91] Metzger B, Hentschel M, Schumacher T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 2014, 14(5): 2867-2872.

[92] Aouani H, Rahmani M, Navarro-Cía M, et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology, 2014, 9(4): 290-294.

[93] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2017, 2: 17010.

[94] Dong Z C, Zhang X L, Gao H Y, et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons[J]. Nature Photonics, 2010, 4(1): 50-54.

[95] Chikkaraddy R, de Nijs B, Benz F, et al. . Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 2016, 535(7610): 127-130.

[96] Savage K J, Hawkeye M M, Esteban R, et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 2012, 491(7425): 574-577.

[97] Tame M S. McEnery K R, Ozdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 2013, 9(6): 329-340.

[98] Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nature Communications, 2014, 5: 5228.

[99] Tan S F, Wu L. Yang J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 2014, 343(6178): 1496-1499.

[100] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[101] Liu B A, Wang D X, Shi C, et al. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation[J]. Optics Express, 2011, 19(11): 10049-10056.

[102] Mertens J, Eiden A L, Sigle D O, et al. Controlling subnanometer gaps in plasmonic dimers using graphene[J]. Nano Letters, 2013, 13(11): 5033-5038.

[103] Li G C, Zhang Q, Maier S A, et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry[J]. Nanophotonics, 2018, 7(12): 1865-1889.

[104] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano letters, 2010, 10(10): 4040-4048.

[105] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

[106] LongJ,[\s]{1}YangT.[\s]{1}Observation[\s]{1}of[\s]{1}single[\s]{1}molecule[\s]{1}dynamic[\s]{1}behaviors[\s]{1}with[\s]{1}SERS:[\s]{1}desorption[\s]{1}and[\s]{1}conformation[\s]{1}switching[C]∥Conference[\s]{1}on[\s]{1}Lasers[\s]{1}and[\s]{1}Electro-Optics,[\s]{1}June[\s]{1}5-10,[\s]{1}2016,[\s]{1}San[\s]{1}Jose,[\s]{1}California,[\s]{1}United[\s]{1}States.[\s]{1}Washington,[\s]{1}D.C.:[\s]{1}OSA,[\s]{1}2016:[\s]{1}FM4N.[\s]{1}6.[\s]{1}

[107] Choi H K, Park W H, Park C G, et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(13): 4673-4684.

[108] Benz F, Schmidt M K, Dreismann A, et al. Single-molecule optomechanics in “picocavities”[J]. Science, 2016, 354(6313): 726-729.

[109] Wang[\s]{1}XD,[\s]{1}YiH,[\s]{1}YangT.[\s]{1}Efficient[\s]{1}four-wave[\s]{1}mixing[\s]{1}in[\s]{1}loaded[\s]{1}nanoscale[\s]{1}plasmonic[\s]{1}hotspots[C]∥Nonlinear[\s]{1}Optics,[\s]{1}July[\s]{1}17-21,[\s]{1}2017,[\s]{1}Waikoloa,[\s]{1}Hawaii,[\s]{1}United[\s]{1}States.[\s]{1}Washington,[\s]{1}D.C.:[\s]{1}OSA,[\s]{1}2017:[\s]{1}NW1A.[\s]{1}6.[\s]{1}

[110] Zhang L, Yu Y J, Chen L G, et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 2017, 8: 580.

[111] YangT,[\s]{1}LongJ,[\s]{1}Wang[\s]{1}X[\s]{1}D.[\s]{1}Stepwise[\s]{1}quantum[\s]{1}phonon[\s]{1}pumping[\s]{1}in[\s]{1}plasmon-enhanced[\s]{1}Raman[\s]{1}scattering[J/OL].[\s]{1}([\s]{1}2017-05-30)[2019-08-01].[\s]{1}https:∥arxiv.org/abs/1601.[\s]{1}03324.[\s]{1}

[112] Lombardi A, Schmidt M K, Weller L, et al. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking[J]. Physical Review X, 2018, 8(1): 011016.

[113] Wang X, Li M H, Meng L Y, et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates[J]. ACS Nano, 2014, 8(1): 528-536.

[114] Lin K Q, Yi J, Zhong J H, et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering[J]. Nature Communications, 2017, 8: 14891.

[115] Hill R T, Mock J J, Hucknall A, et al. Plasmon ruler with angstrom length resolution[J]. ACS Nano, 2012, 6(10): 9237-9246.

[116] Mock J J, Hill R T, Tsai Y J, et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation[J]. Nano Letters, 2012, 12(4): 1757-1764.

[117] Chen W, Zhang S P, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons[J]. Nature Communications, 2018, 9: 801.

[118] Readman C, de Nijs B, Szabó I, et al. . Anomalously large spectral shifts near the quantum tunnelling limit in plasmonic rulers with subatomic resolution[J]. Nano Letters, 2019, 19(3): 2051-2058.

[119] Chikkaraddy R, Turek V A, Kongsuwan N, et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami[J]. Nano Letters, 2018, 18(1): 405-411.

[120] Yi H, Long J, Li H Q, et al. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots[J]. Optics Express, 2015, 23(7): 8338-8347.

[121] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.

[122] Jiang S, Zhang Y, Zhang R, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature Nanotechnology, 2015, 10(10): 865-869.

[123] Zhang Y, Meng Q S, Zhang L, et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity[J]. Nature Communications, 2017, 8: 15225.

[124] Zhang Y, Luo Y, Zhang Y, et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 2016, 531(7596): 623-627.

[125] Wang L, Xu X F. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging[J]. Applied Physics Letters, 2007, 90(26): 261105.

[126] Taminiau T H, Moerland R J, Segerink F B, et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence[J]. Nano Letters, 2007, 7(1): 28-33.

[127] Wang Y, Srituravanich W, Sun C, et al. Plasmonic nearfield scanning probe with high transmission[J]. Nano Letters, 2008, 8(9): 3041-3045.

[128] Zou Y S, Steinvurzel P, Yang T, et al. Surface plasmon resonances of optical antenna atomic force microscope tips[J]. Applied Physics Letters, 2009, 94(17): 171107.

[129] Burresi M, van Oosten D, Kampfrath T, et al. . Probing the magnetic field of light at optical frequencies[J]. Science, 2009, 326(5952): 550-553.

[130] Fleischer M, Weber-Bargioni A, Altoe M V, et al. Gold nanocone near-field scanning optical microscopy probes[J]. ACS Nano, 2011, 5(4): 2570-2579.

[131] Weber-Bargioni A, Schwartzberg A, Cornaglia M, et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes[J]. Nano Letters, 2011, 11(3): 1201-1207.

[132] Umakoshi T, Yano T A, Saito Y, et al. Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy[J]. Applied Physics Express, 2012, 5(5): 052001.

[133] Berweger S, Atkin J M, Olmon R L, et al. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 945-952.

[134] Kravtsov V, Ulbricht R, Atkin J M, et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5): 459-464.

[135] Fleischer M. Near-field scanning optical microscopy nanoprobes[J]. Nanotechnology Reviews, 2012, 1(4): 313-338.

[136] Huth F, Chuvilin A, Schnell M, et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy[J]. Nano Letters, 2013, 13(3): 1065-1072.

[137] Schuck P J, Weber-Bargioni A, Ashby P D, et al. Life beyond diffraction: opening new routes to materials characterization with next-generation optical near-field approaches[J]. Advanced Functional Materials, 2013, 23(20): 2539-2553.

[138] Maouli I, Taguchi A, Saito Y, et al. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging[J]. Applied Physics Express, 2015, 8(3): 032401.

[139] Zhao Y. Saleh A A E, van de Haar M A, et al. Nanoscopic control and quantification of enantioselective optical forces[J]. Nature Nanotechnology, 2017, 12(11): 1055-1059.

[140] Ma X Z, Zhu Y Z, Yu N, et al. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes[J]. Nano Letters, 2019, 19(1): 100-107.

[141] Kim S, Yu N, Ma X Z, et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy[J]. Nature Photonics, 2019, 13(9): 636-643.

[142] He X L, Yang L, Yang T. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides[J]. Optics Express, 2011, 19(14): 12865-12872.

[143] Kalkbrenner T, Ramstein M, Mlynek J, et al. A single gold particle as a probe for apertureless scanning near-field optical microscopy[J]. Journal of Microscopy, 2001, 202(1): 72-76.

[144] Kühn S, Håkanson U, Rogobete L, et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna[J]. Physical Review Letters, 2006, 97(1): 017402.

[145] NovotnyL,[\s]{1}HechtB.[\s]{1}Principles[\s]{1}of[\s]{1}nano-optics[M].[\s]{1}2nd[\s]{1}ed.[\s]{1}Cambridge:[\s]{1}Cambridge[\s]{1}University[\s]{1}Press,[\s]{1}2012.[\s]{1}

[146] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles[J]. Physical Review Letters, 2007, 98(2): 026104.

[147] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.

[148] Kim Z H, Leone S R. High-resolution apertureless near-field optical imaging using gold nanosphere probes[J]. The Journal of Physical Chemistry B, 2006, 110(40): 19804-19809.

[149] Olk P, Renger J, Wenzel M T, et al. Distance dependent spectral tuning of two coupled metal nanoparticles[J]. Nano Letters, 2008, 8(4): 1174-1178.

[150] ChenC,[\s]{1}Li[\s]{1}HQ,[\s]{1}LiH,[\s]{1}et[\s]{1}al.[\s]{1}Localized[\s]{1}surface[\s]{1}plasmon[\s]{1}resonance[\s]{1}scanning[\s]{1}microscopy[\s]{1}with[\s]{1}optical[\s]{1}antenna[\s]{1}on[\s]{1}fiber[\s]{1}taper[C]∥Proceedings[\s]{1}of[\s]{1}the[\s]{1}19th[\s]{1}IEEE[\s]{1}International[\s]{1}Conference[\s]{1}on[\s]{1}Nanotechnology,[\s]{1}Macao.[\s]{1}New[\s]{1}York:[\s]{1}IEEE,[\s]{1}2019.[\s]{1}

杨天, 陈成, 王晓丹, 周鑫, 雷泽雨. 光纤端的等离激元探测技术[J]. 激光与光电子学进展, 2019, 56(20): 202404. Tian Yang, Cheng Chen, Xiaodan Wang, Xin Zhou, Zeyu Lei. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!