激光与光电子学进展, 2019, 56 (20): 202404, 网络出版: 2019-10-22  

光纤端的等离激元探测技术 下载: 2836次特邀综述

Plasmonic Sensing on Fiber Tip
作者单位
上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
图 & 表

图 1. 光纤与SPR集成器件示例。(a)单模光纤端面单一周期性结构[13];(b)多模光纤端面器件[14];(c)光纤侧壁器件[29];(d)单模光纤端面SPR微腔[25]

Fig. 1. Examples of optical-fiber and integrated SPR devices. (a) Uniform periodic structure on single-mode optical fiber's end-facet[13]; (b) device on multi-mode optical fiber's end-facet[14]; (c) device on optical fiber's sidewall[29]; (d) SPR microcavity on single-mode optical fiber's end-facet[25]

下载图片 查看原文

图 2. 单模光纤端面SPR微腔结构。(a)(b) SPP带边态结构示意图及靠近结构中央处的扫描电子显微镜照片[25];(c)(d) SPP禁带内缺陷态结构示意图及靠近结构中央处的扫描电子显微镜照片[25]

Fig. 2. SPR microcavities on single-mode optical fiber end-facets. (a)(b) Schematic of a structure for achieving an intraband SPP cavity mode and its SEM image near the center of the structure[25]; (c)(d) schematic of a structure for achieving a defect cavity mode in the SPP bandgap and its SEM image near the center of the structure[25]

下载图片 查看原文

图 3. SPR微腔谐振态的理论与实验结果。(a) 645 nm周期无穷大纳米槽阵列的SPP能带计算图[44];(b) SPP禁带(点划线)内缺陷态(箭头)及其随缺陷宽度s变化的计算图[44], s定义见图2(c);(c)单模光纤端面SPP带边态结构的反射谱[25]

Fig. 3. Theoretical and experimental results for SPR microcavity resonant state. (a) SPP band diagram for infinitely wide nanoslit array with period of 645 nm[44]; (b) defect modes (arrows) in the SPP bandgap (dash-dot lines), and their dependence on the defect's width s, refer to Fig. 2(c) for the definition of s[44]; (c) reflection spectra of an intraband SPP cavity mode structure on single-mode optical fiber's end-facet[25]

下载图片 查看原文

图 4. 光纤端面SPR结构的3种转移加工技术。(a) Nanoskiving[12];(b) decal transfer[10];(c) glue-and-strip[25]

Fig. 4. Three transfer techniques for fabricating SPR structures on optical fiber end-facets. (a) Nanoskiving[12]; (b) decal transfer[10]; (c) glue-and-strip[25]

下载图片 查看原文

图 5. 基于单模光纤端面SPR微腔传感器的生物分子相互作用分析实验[7]。其中除了第一步基线测试外,每步都是先浸入分子溶液,再浸入缓冲液,两个区间以曲线上的一个小尖为分界

Fig. 5. Biomolecule interaction analysis experiment based on SPR microcavity sensor on single-mode optical fiber's end-facet[7]. Except for the first step which is baseline, each step comprises of two parts which are immersing the sensor in the molecule solution and then in the buffer solution. There is a little spike on the testing curve between the two parts

下载图片 查看原文

图 6. 典型微纳声光器件示意图(它们的光学导波功能与声光转换功能由同一种材料完成)。(a)微环[54];(b)法布里-珀罗腔[62]

Fig. 6. Schematics of typical acousto-optic micro devices (in both devices, optical waveguiding and acousto-optic transduction are performed by the same material). (a) Micro-ring[54]; (b) Fabry-Pérot cavity[62]

下载图片 查看原文

图 7. 以单模光纤端面SPR微腔对超声进行探测[51]。(a)实验系统示意图;(b)SPR反射谱;(c)对10 MHz中心频率超声脉冲的反射光功率响应

Fig. 7. Ultrasound detection with an SPR microcavity on a single-mode optical fiber end-facet. (a) Schematic of the experimental system; (b) SPR reflection spectrum; (c) undulation of laser power reflection in response to a series of ultrasound pulse with a central frequency of 10 MHz

下载图片 查看原文

图 8. 聚焦空间径向偏振的激光激发60 nm直径金球-单层分子-原子级平滑金面体系[76]。(a)示意图,画出了金球的镜像;(b)在纵向LSPR谐振条件下,hotspot纵向电场能量密度分布的仿真结果,颜色表示相对于入射光的增强倍数;(c)吸附了单层4-nitrobenzenethiol分子的20个不同的金球在300 nW入射激光功率下的拉曼光谱,展示了极大增强倍数的可重复性

Fig. 8. Focusing radially polarized laser beam to excite structure which contains a 60-nm gold nanosphere, a monolayer of molecules, and an atomically flat gold surface[76]. (a) Schematic, with the gold nanosphere's mirror image; (b) simulation result for the vertical electric field component's intensity distribution in the hotspot under vertical LSPR resonance, with color scale indicating enhancement compared to the incident light; (c) experimental Raman spectra of 20 different gold nanospheres, each c

下载图片 查看原文

图 9. 动态调控的等离激元天线。(a)银纳米线-镜面结构的LSPR波长随间隙内分子的热胀冷缩而移动[117];(b)基于DNA折纸术控制单个荧光分子在hotspot中的位置[119];(c)用气凝胶上的金纳米球对聚焦光斑的空间偏振态进行扫描成像,右下子图显示成像结果[120];(d)STM结合LSPR效应对单个和若干个分子进行调控和测量(上两行是单个分子与等离激元的Fano耦合,底行是对两个分子电偶极矩耦合的扫描成像)[123-124]

Fig. 9. Dynamically tuned plasmonic antennas. (a) The LSPR of a silver nanowire-mirror structure is tuned by thermal expansion of molecules in the gap[117]; (b) the relative position of a single fluorescence molecule in a plasmonic hotspot is controlled by DNA origami[119]; (c) the spatial polarization state of a laser focal spot is imaged by scanning a gold nanosphere on aerogel, with an imaging result in the inset; (d) tuning and measurement of single and few molecules using an LSPR probe on STM (top

下载图片 查看原文

图 10. 集成在SPM针尖的等离激元结构。(a)在AFM针尖用聚焦离子束刻蚀制作的LSPR天线[128];(b)一对AFM针尖上的金球组成dimer LSPR天线,通过导电AFM控制和测量天线间隙[96];(c)AFM探针上雕刻的金属光栅将入射光波耦合到SPP,并将SPP聚焦到针尖[133];(d)雕刻了螺旋形金光栅的AFM探针具有手性光力作用[139];(e)基于锥形光纤与银纳米线高效率耦合的近场光学显微镜探针[141]

Fig. 10. Plasmonic structures integrated on SPM probes. (a) An LSPR antenna on an AFM probe apex has been fabricated using focused ion beam milling[128]; (b) a pair of gold spheres on AFM probe apexes comprise a dimer LSPR antenna, with its gap size controlled and measured by conductive AFM[96]; (c) a metallic grating carved on an AFM probe couples incident light waves to SPPs, and focuses SPPs to the probe apex[133]; (d) a helical gold grating carved on an AFM probe is used to detect enantioselective op

下载图片 查看原文

图 11. 基于锥形光纤尖端金纳米颗粒探针的AFM技术。(a)金纳米颗粒探针接近另一个金纳米颗粒时,四波混频信号的急遽上升[146];(b)金纳米颗粒探针接近单个分子时,分子荧光从增强到淬灭的过程[147]

Fig. 11. AFM technology based on gold nanoparticle probes on tapered optical fibers' apexes. (a) As a gold nanoparticle probe approaches another gold nanoparticle, the four-wave-mixing signal increases significantly[146]; (b) as a gold nanoparticle probe approaches a single molecule, the molecular fluorescence experiences the process from enhancement to quenching[147]

下载图片 查看原文

图 12. 以锥形光纤尖端100 nm金球的LSPR散射波长为待测变量,对玻璃衬底上的100 nm金球进行AFM扫描成像[150]。(a)金纳米球探针接近另一个金纳米球时,LSPR散射谱里纵向dimer模式的出现;(b)以金纳米球探针作AFM线扫描的形貌结果(上)和LSPR结果(下)

Fig. 12. Scanning LSPR microscopy of a 100 nm gold nanosphere on a glass substrate, using a 100 nm gold nanosphere on a tapered optical fiber's apex as the AFM probe, and its LSPR scattering spectrum as the imaged quantity[150]. (a) Schematic showing that as the gold nanosphere probe approaches a gold nanosphere target, a vertical dimer mode appears in the LSPR scattering spectrum; (b) line scanning result for morphology (top) and LSPR (bottom)

下载图片 查看原文

杨天, 陈成, 王晓丹, 周鑫, 雷泽雨. 光纤端的等离激元探测技术[J]. 激光与光电子学进展, 2019, 56(20): 202404. Tian Yang, Cheng Chen, Xiaodan Wang, Xin Zhou, Zeyu Lei. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!