激光与光电子学进展, 2019, 56 (20): 202404, 网络出版: 2019-10-22  

光纤端的等离激元探测技术 下载: 2834次特邀综述

Plasmonic Sensing on Fiber Tip
作者单位
上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
摘要
尝试对两类典型的光纤端集成等离激元探测技术的发展进行回顾与梳理,并结合作者的科研实践对本领域未来工作的重点和潜在价值进行讨论。第一类技术是在光纤的端平面集成等离激元谐振传感结构,尤其是等离激元微腔。这种器件既能够插进微量样品通过dip-and-read方式进行生物分子传感,也能够伸入狭小的空间进行超声内窥探测。未来,如何在秉持方便、快速核心价值的基础上,解决复杂样品中低含量分子检测的难题,是这类器件进入医学诊断和食品检验应用领域的关键;而如何大幅提高表面等离激元谐振传感器对声信号的灵敏度,是实现具有重要应用价值的光纤表面等离激元谐振水听器阵列的关键。第二类技术是在锥形光纤尖端集成等离激元天线探针。结合各种扫描探针显微技术,这种器件提供了对等离激元天线的高精度动态调控能力,及通过等离激元热点与样品的强烈作用进行高分辨扫描成像的能力。未来,通过对天线探针和可测量物理量的创新研究,有望进一步扩展可表征物理和化学现象的范围,显著提升表征性能。
Abstract
In this paper, we attempt to review and sort out the development of two typical types of plasmonic-sensing-on-fiber-tip technologies, and discuss the focus for future work and potential values for application. The first type is surface plasmon resonance (SPR) sensing structures, especially surface plasmon cavities, integrated on optical fiber end-facets. They can be applied to small volumes of samples and achieve biomolecule sensing in a dip-and-read manner. They can also be inserted into narrow spaces for ultrasound endoscopy. In the future, how to solve the problem of low content detection in complex crude samples while upholding the core values of convenience and rapidness, is the critical challenge for fiber SPR sensor development in order to find real application values in medical diagnosis and agriculture product inspection. On the other hand, to greatly improve SPR devices' sensitivities to acoustic signals is the key to achieving fiber SPR hydrophone arrays with high application values. The second type is plasmonic antennas integrated on tapered optical fibers' apexes. Combined with scanning probe microscopy technologies, these probe devices render high precision and dynamic tuning of plasmonic antennas, and high resolution scanning microscopy by using plasmonic hotspots to strongly interact with and map the samples. In the future, through innovative research on the antenna probes and the to-be-measured quantities, the scope of physical and chemical phenomena that can be characterized is expected to be further expanded, and the characterization performance is expected to significantly improve.

1 引言

在单模光纤的端平面集成表面等离激元谐振(SPR)微纳器件,是融合微纳光学与光纤通信技术的一种独特途径。在对生化物质和环境场的探测中,这类技术已经清晰地展示出应用价值。与基于自由空间光束耦合到表面等离极化激元(SPP)的现有商业设备相比,光纤导波耦合的方式具有体积紧凑、光路灵活的显著优势。同时,细小的光纤端可以插进微量样品通过dip-and-read的方式直接读取信号,也能够伸入狭小的空间进行内窥探测,减轻内窥操作对检测对象造成的伤害。近10年来,针对这类器件,人们不断地发展与提升理论模型及制备工艺,并演示了对生物分子与声波的探测功能。在2018年英国物理学会发布的报告《The health of photonics》中,针对老龄化社会列出6项光学技术解决方案,其中就包括“在专用光纤上安装微小传感器,实现即时、高灵敏度的化学与生物分析。”[1] 另一方面,锥形光纤探针,因其较低的背景散射和便捷的制备工艺,也是一种集成等离激元纳米器件的良好平台。其中,通过扫描探针显微(SPM)技术操纵黏附在锥形光纤顶端的等离激元纳米颗粒天线,是实现等离激元天线精密动态调控的重要手段。本文拟结合作者的研究心得,对这两方面的研究现状、发展路径和应用前景进行介绍与讨论。

2 单模光纤端面集成表面等离激元谐振探测技术

在单模光纤上集成较高灵敏度的SPR传感器,具有低损伤侵入式测量、通过柔软细小的光纤传导信号、结合成熟的光纤通信技术、紧凑稳定的光学系统等诸多技术能力和优势。而其所采用的dip-and-read简单操作方式大大减少了操作时间和复杂度,这对SPR技术往急诊、床边检验、现场检验等应用领域发展具有重要的价值。Lab-on-fiber已经发展成微纳光学领域的一个重要研究方向[2-8]。以下先从结构设计与制备工艺两方面介绍若干代表性成果,然后介绍生物分子与声波探测应用的发展情况,最后讨论未来可能的发展方向及需要注意的问题。

2.1 表面等离激元谐振的结构设计与理论模型

目前其他研究团队报道的单模光纤端面SPR结构基本都延续了自由空间平面光波与芯片上的SPR结构通过光栅耦合的思路,采用单一的周期性结构,或者较少考虑各个SPR单元的相互耦合而注重独立单元与光波的耦合性能,例如纳米颗粒阵列、纳米孔阵列、光栅和超构表面等[2,5-6,9-24]图1(a)为其中一个例子[13]。但是光纤导波和SPR的耦合机制与平面波有很大区别,这可以从两个角度来理解[25]。首先,光纤导波具有一定发散角,可以等效为一系列具有不同入射角的平面波之和。而因为平面波与周期性光栅结构耦合的谐振波长会随入射角改变,所以单模光纤导波与单一周期性SPR结构耦合的情形与平面波耦合情形相比,呈现出SPR光谱显著展宽和中心波长耦合效率显著下降的特征。从另一个角度,在单模光纤导波与SPR模式的耦合中,SPP表面波向耦合区域外的传输等效为SPR模式的辐射损耗,从而使耦合处于严重的under-coupling状态,导致耦合效率显著下降和谐振谱显著展宽。如果以三倍检测噪声除以折射率变化的灵敏度来定义探测限(LOD)[26],目前已报道的单模光纤端面单一周期性SPR结构的LOD比基于棱镜耦合SPR的旗舰商业设备Biacore生物分子相互作用分析(下文简称:分子互作分析)仪器高3个或3个以上数量级,前者离实际应用需求有很大差距。

为避免单模光纤与端面SPR结构耦合的困难,有较多的研究工作转而采用多模光纤。图1(b)为其中一个例子[14]。这类器件能够做到较低的LOD,且可采用dip-and-read进样方式,操作比微流控进样简单方便得多。著名的ForteBio分子互作分析仪采用的所谓“光纤”探针也相当于多模光纤的一种(但不是SPR技术),是直径约1 mm的玻璃棒,其相对于Biacore的最大优势是操作方便、快速和低成本。但因为在应用时需建立自由空间光学系统以激发多模光纤的基模,这类器件的光学系统较为复杂。近年来有报道指出,多模光纤的传输光谱对于光纤弯曲的敏感度比单模光纤更低,因此基于多模光纤的传感系统比基于单模光纤的传感系统更加稳定[27]。但对一台稳定的设备来说,光纤的弯曲变化非常微小,在这种情况下保持一个可控的光纤导波模场也许更加重要,因此光纤弯曲敏感度对仪器的最终性能有多大影响需进一步研究。

图 1. 光纤与SPR集成器件示例。(a)单模光纤端面单一周期性结构[13];(b)多模光纤端面器件[14];(c)光纤侧壁器件[29];(d)单模光纤端面SPR微腔[25]

Fig. 1. Examples of optical-fiber and integrated SPR devices. (a) Uniform periodic structure on single-mode optical fiber's end-facet[13]; (b) device on multi-mode optical fiber's end-facet[14]; (c) device on optical fiber's sidewall[29]; (d) SPR microcavity on single-mode optical fiber's end-facet[25]

下载图片 查看所有图片

另有大量的研究工作将SPR结构放在光纤侧壁,同样可以避免单模光纤与端面SPR结构耦合的困难[2,4-5,28-43]图1(c)为其中一个例子[29]。考虑到分子互作实验的样品体积常在100 μL左右,如何对微量样品采用dip-and-read的简单操作方式是此类器件在应用中面临的一个技术难题。另外,光纤侧壁SPR结构有时被集成在微流控通道上,虽然微流控技术经常伴随着小型化、集成化生化检测芯片出现,但它对于无标记检测却未必能够带来此类优势。原因如下:首先,SPR无标记检测技术对环境的微小变化非常敏感,所以它对微流控系统有着很高的要求;其次,微流通道易被大颗粒堵塞,不适合对复杂的粗样品进行直接测量。事实上,Biacore的微射流卡盘每使用一年左右的时间后需更换一次,每次更换花费10万元左右。因此,建立高精密度的微流控芯片与发展光纤集成SPR技术的初衷在一定程度上不相符。

2016年以来,为提高单模光纤导波和端面SPR结构耦合的Q值(即谐振波长除以谐振谱半峰全宽的商)和耦合效率,本课题组报道了SPR微腔的方法[7,25,44],其折射率LOD达到10-6 RIU(RIU为折射率单元)水平,离Biacore 8K还差1个数量级,但已满足目前多数分子互作动力学分析实验的需求。器件的光学显微镜照片如图1(d)所示[25]。其中,125 μm直径的圆形轮廓是单模光纤的外周;其上覆盖一层金薄膜,膜厚55 nm;金薄膜上的阴影部分是正方形排布的纳米槽阵列,属于一种SPP晶体结构,槽宽约50 nm,槽深贯穿金薄膜。图2是两种不同的SPR微腔结构设计。第一种结构首先包括中央的纳米槽阵列,其总体宽度与光纤导波模式匹配,周期为645 nm,用来和850 nm波长的光纤导波模式进行光栅耦合;同时还包括周围的纳米槽阵列,周期为315 nm,用来产生SPP禁带限制SPP的传输,从而形成一个SPR微腔[25]。在这个结构中,中央纳米槽阵列不仅用其一阶空间傅里叶分量与光纤导波进行光栅耦合,同时还通过二阶空间傅里叶分量形成布里渊区中心的SPP禁带,如图3(a)所示。因此,其SPR模式是被四周的SPP反射镜限制在光纤导波横截面附近的一个SPP带边态。在第二种结构中,中央纳米槽阵列延展到整个端面,但在其中心加入了一个1/4波长的相移,从而形成SPP禁带里的缺陷态,通过调节相移还能调谐SPR缺陷态的波长,如图3(b)所示[44-45]。此时,纳米槽阵列既用其一阶空间傅里叶分量与光纤导波进行光栅耦合,又通过二阶空间傅里叶分量限制SPP的传输,从而形成SPR微腔。以上两种SPR微腔在与850 nm附近的单模光纤导波耦合下的品质因数均为100左右,折射率灵敏度均为600 nm·RIU-1左右。图3(c)是第一种结构在不同折射率溶液里的反射谱。未来通过更复杂的微腔设计,比如在金薄膜两个表面或对不同偏振方向设计不同的SPR波长,这种器件有可能实现更复杂的功能[46]

图 2. 单模光纤端面SPR微腔结构。(a)(b) SPP带边态结构示意图及靠近结构中央处的扫描电子显微镜照片[25];(c)(d) SPP禁带内缺陷态结构示意图及靠近结构中央处的扫描电子显微镜照片[25]

Fig. 2. SPR microcavities on single-mode optical fiber end-facets. (a)(b) Schematic of a structure for achieving an intraband SPP cavity mode and its SEM image near the center of the structure[25]; (c)(d) schematic of a structure for achieving a defect cavity mode in the SPP bandgap and its SEM image near the center of the structure[25]

下载图片 查看所有图片

图 3. SPR微腔谐振态的理论与实验结果。(a) 645 nm周期无穷大纳米槽阵列的SPP能带计算图[44];(b) SPP禁带(点划线)内缺陷态(箭头)及其随缺陷宽度s变化的计算图[44], s定义见图2(c);(c)单模光纤端面SPP带边态结构的反射谱[25]

Fig. 3. Theoretical and experimental results for SPR microcavity resonant state. (a) SPP band diagram for infinitely wide nanoslit array with period of 645 nm[44]; (b) defect modes (arrows) in the SPP bandgap (dash-dot lines), and their dependence on the defect's width s, refer to Fig. 2(c) for the definition of s[44]; (c) reflection spectra of an intraband SPP cavity mode structure on single-mode optical fiber's end-facet[25]

下载图片 查看所有图片

2.2 制备工艺

在微细的光纤端面进行高质量和精确对准的纳米结构加工对制备工艺提出了挑战。产业化的制备工艺要求高效率、高良品率和高可重复性。人们尝试了在光纤端面直接用电子束光刻[13-14]、离子束刻蚀[9,16-18]等方法加工SPR结构,及各种把SPR结构转移到光纤端面的方法,包括nanoskiving[12]、decal transfer[10]、template stripping[25,47-49]等。图4列举其中3种转移技术。其他相关技术还包括干涉光刻、激光直写、化学腐蚀和拉锥、光纤对准光刻、纳米压印、纳米颗粒自组装和MEMS技术等[3]

2016年,本课题组报道了将平面玻璃衬底上的SPR微腔结构精确转移到单模光纤端面的制备工艺,如图4(c)所示[25]。其具有器件质量好、制备效率高、能够以较低成本进行大量生产等优点。制备步骤如下:1)用电子束蒸发、电子束光刻和氩离子束刻蚀技术在玻璃衬底上加工形成金薄膜SPR微腔结构;2)用五维精密位移系统结合体式显微镜将单模光纤端面对准SPR微腔,同时实时监控反射到光纤里的SPR反射谱并调整对准情况;3)用紫外灯固化步骤2)中已经涂敷于光纤端面的胶水;4)将光纤撤回,因为金稳定的化学性质导致它和衬底的结合力较弱,所以含有SPR微腔结构的金薄膜被从玻璃衬底完整地剥离并转移到光纤端面,如图1(d)所示。在剥离-转移工艺技术方向,进一步的研究工作采用牺牲层的方法,为更复杂结构的制备提供了一条路径,例如用盐酸溶解ITO牺牲层[47],本课题组也尝试用水溶解MoO3牺牲层。

图 4. 光纤端面SPR结构的3种转移加工技术。(a) Nanoskiving[12];(b) decal transfer[10];(c) glue-and-strip[25]

Fig. 4. Three transfer techniques for fabricating SPR structures on optical fiber end-facets. (a) Nanoskiving[12]; (b) decal transfer[10]; (c) glue-and-strip[25]

下载图片 查看所有图片

2.3 生物分子相互作用分析应用

目前,SPR传感器的最主要应用是检测和分析生物大分子之间的结合和解离实时动态过程。当折射率LOD达到一定水平后,实际的分子探测下限和良好的动力学表征性能并不单纯取决于甚至不主要取决于折射率灵敏度,必须综合测量噪声、环境控制、流体力学、化学表面、配体固定等因素进行全面的设计才能得到好的实验结果。对相关内容我们将另行撰文介绍。

在前期工作中,本课题组以多聚赖氨酸为骨架的聚乙二醇(PEG)为亲水表面,以生物素(biotin)为配体进行了一些简单的验证性实验。图5为一个实例[7]

图 5. 基于单模光纤端面SPR微腔传感器的生物分子相互作用分析实验[7]。其中除了第一步基线测试外,每步都是先浸入分子溶液,再浸入缓冲液,两个区间以曲线上的一个小尖为分界

Fig. 5. Biomolecule interaction analysis experiment based on SPR microcavity sensor on single-mode optical fiber's end-facet[7]. Except for the first step which is baseline, each step comprises of two parts which are immersing the sensor in the molecule solution and then in the buffer solution. There is a little spike on the testing curve between the two parts

下载图片 查看所有图片

2.4 超声探测应用

基于声压改变折射率的声光效应,SPR也被用于超声探测[50-51]。虽然目前其灵敏度远低于基于高Q值光学谐振微腔的声光探测器件,但其表面波探测方式的空间开放性给其将来与高响应声学材料结合提供了独特的优势。下面围绕超声探测应用,先对光学谐振微腔及其单模光纤端面集成作简要的评述,然后介绍单模光纤端面SPR微腔在此方面的初步结果。

针对压电水听器灵敏度和带宽的矛盾,光学谐振微腔提供了一个有前景的超声探测方案,在过去约20年间得到了较多的研究[52-65]。其基本的声光转换原理是,将固定波长激光耦合到微腔,以声压改变微腔的等效折射率或几何尺寸,引起微腔谐振波长的移动,从而导致激光反射或透射功率随声压的变化。基于高Q值的光学谐振模式和微米量级的器件厚度,近年来若干报道中的噪声等效声压(NEP)达到Pa·MHz-1/2 量级,而超声波正入射下的带宽达到几百MHz,已经超过压电水听器的水平。微环谐振腔是其中最为典型的结构之一,如图6(a)所示,微环的回音壁模式通过光波导和单模光纤耦合到激光器与光探测器。2014年美国密西根大学和西北大学均报道了Q值高达105量级的微环水听器,其NEP分别为105 Pa和6.8 Pa,带宽分别为350 MHz和140 MHz[54,56]。对回音壁模式水听器的进一步研究包括光模场分布、毛细管谐振腔、CMOS工艺、声学振动和光纤激光器集成等[57-60]

图 6. 典型微纳声光器件示意图(它们的光学导波功能与声光转换功能由同一种材料完成)。(a)微环[54];(b)法布里-珀罗腔[62]

Fig. 6. Schematics of typical acousto-optic micro devices (in both devices, optical waveguiding and acousto-optic transduction are performed by the same material). (a) Micro-ring[54]; (b) Fabry-Pérot cavity[62]

下载图片 查看所有图片

图 7. 以单模光纤端面SPR微腔对超声进行探测[51]。(a)实验系统示意图;(b)SPR反射谱;(c)对10 MHz中心频率超声脉冲的反射光功率响应

Fig. 7. Ultrasound detection with an SPR microcavity on a single-mode optical fiber end-facet. (a) Schematic of the experimental system; (b) SPR reflection spectrum; (c) undulation of laser power reflection in response to a series of ultrasound pulse with a central frequency of 10 MHz

下载图片 查看所有图片

尽管微环等水听器达到了很高的声探测性能,但对需要极小器件尺寸的内窥场景而言,将微腔直接集成在单模光纤的端面是更加具有高价值应用前景的方式。英国伦敦大学学院在此方面进行了多年的研究并不断取得突破[61-64]。2009年,他们报道了单模光纤端面的平面镜法布里-珀罗(F-P)腔,其多聚物薄膜腔体的长度随声压变化,得到NEP为5 kPa(20 MHz内),带宽为50 MHz[61]。这种器件已经商业化,是Precision Acoustics公司的UMS3超声探测系统的核心技术。之后,通过利用表面张力来制备球面镜F-P腔,如图6(b)所示,这种器件的Q值得到大幅提升,NEP达到8 Pa(20 MHz以内)和4 Pa(5 MHz内)[62,64]。但另一方面,受限于F-P腔的尺寸,这类器件的带宽并没有超过压电水听器。

基于紫外固化胶折射率随声压的变化,单模光纤端面SPR微腔也具有超声探测能力。我们将光纤导波耦合到沿金薄膜朝向固化胶一面的SPR谐振模式,工作波长为1550 nm附近[51]。如图7所示,可调谐激光器通过单模光纤入射到SPR微腔,其激光波长处于SPR谐振谱的斜坡上,当声压改变紫外固化胶的折射率时,SPR谐振谱随折射率变化而发生波长移动,所以反射光功率就随声压而变化。当激光波长位于SPR谐振谱的左右两个不同斜坡时,反射光功率的极性也相反。去除测量系统的电学噪声后,该实验的NEP达到5 kPa(20 MHz以内)。为测量该传感器的频率响应和带宽,我们用脉冲宽度约5 ns的532 nm脉冲激光器照射Cr膜以产生大带宽超声脉冲。该实验表明该器件的响应带宽至少不小于125 MHz,对更高频率的响应特性的测量受限于我们的测量系统。

2.5 未来发展方向和关键技术突破点

对SPR技术的生物分子检测应用而言,互作动力学分析是当前最大的市场,已经广泛应用于生命科学研究和药物研发,全球市场规模10亿美元左右[66-67]。在此应用领域,光纤端面SPR传感技术因其方便、快速和小型化的特点,具有取代当前基于自由空间光学和微流控进样的大型、复杂SPR仪器的巨大潜力。进一步,如果能够实现对粗样品中生物标志物含量的快速、精准定量测量,显著提高床旁免疫诊断和农产品检验的准确性和速度,这将把SPR技术应用带入前所未有的广阔天地。基于dip-and-read方式对微量粗样品进行方便、快速的检测,将成为光纤端传感器在未来应用上的一大优势。

需要注意的是,当折射率LOD达到10-6 RIU或更低水平后,在传感器研究层面,如何去除环境和杂质干扰成为比灵敏度更关键的问题,直接限制着真实的探测限。以对心肌肌钙蛋白的高敏检测为例,欧洲心脏病学学会指南要求对健康人群第99百分位的定量误差低于10%[68],经计算可知这相当于随机信号漂移应小于0.01 pg·(mm-2·min-1)[假设满吸附信号为1000 pg·mm-2,动力学结合常数为106 M-1·s-1 (1 M=1 mol/L),标志物浓度0.02 μg/L,标志物分子量约为20 kDa],这个要求已经高于Biacore 8K产品手册给出的扣减空白参照后的漂移值。未关注环境和杂质干扰的极低含量探测是没有意义的,即便在实验中看起来获得了可重复的结果也需要审慎对待,相关内容我们会另行撰文介绍。

对声信号检测应用而言,用较低Q值的传感器实现高灵敏度探测,比高Q值传感器具有更广泛和更现实的应用价值,因为后者很难实现阵列工作。对具有高Q值的光学微腔而言,因为环境的变化和系统的漂移,要实现激光波长稳定在谐振峰范围内,就必须根据反馈实时调节激光波长。而对一个阵列内的多个高Q值光学微腔而言,因为无法使各器件的谐振波长保持一致,也很难使它们的漂移量保持一致,需要各阵元单独对应各自的激光波长。如果给每个阵元配一台可调谐激光器,系统的体积和成本都是难以承受的。在这种情形下,妥协方案是只用一台波长可调谐激光器,但是在单个声脉冲的时间内只有单个声光元件工作,并对不同的声脉冲逐个扫描阵列里的各个声光元件。伦敦大学学院近年来做了很多超声成像光学微腔阵列方面的努力,就是采用这种妥协方案,其主要缺点是扫描时间长,即使在多束激光平行扫描下,如何提高成像帧速度到视频水平也是个难题[69-71]

因此,我们认为,通过增加材料的声光响应而非增加微腔的光学Q值来提高声探测灵敏度,对于研究可形成阵列的声光探测器件是一条有价值的路径。但微环、F-P腔及各种基于光波导传输的水听器,它们是用来产生声光效应的材料,同时也是光场在其中传输和振荡的材料,导致可选取的材料非常有限。而在光纤端面集成SPR结构中,SPP表面波的空间开放性使得与高敏声学材料、结构的集成更为可行。同时,在这种器件中,声光转换区域的截面尺寸约等于单模光纤导波模式的截面尺寸,仅10 μm左右,在声波非正入射的情形下具有大带宽和大角度响应范围的优点。

3 锥形光纤端局域表面等离子体谐振天线探测技术

此章节中,我们将讨论以贵金属纳米颗粒作为等离激元天线传感器,测量衬底表面性质的工作。具体地,我们将首先介绍由一对金属纳米颗粒或单颗粒及其镜像组成的dimer等离激元天线,然后介绍对等离激元天线进行动态调控的意义和此领域内非光纤集成技术的研究进展,最后讨论将等离激元天线和扫描显微技术及锥形光纤进行集成以实现动态调控的工作。

3.1 贵金属纳米颗粒-镜像等离激元天线

类似于电感电容回路接收特定波长的无线电波,等离激元天线能够形成局域表面等离子体谐振(LSPR),在深亚波长尺度对光波进行有效的散射、吸收和聚焦[72-73]。而当一对贵金属纳米颗粒互相靠近,组成一个dimer LSPR天线时,在夹在两个颗粒中间的间隙处可形成纳米至亚纳米尺度的hotspot,在谐振波长处hotspot内的电场能量密度可比入射光提高几百至上万倍[74-79]。如此小尺寸和高态密度的hotspot,提供了以纳米尺度分辨率探测极大增强的光与物质相互作用的手段,探测对象包括分子吸附或变形、分子振动谱、光电转换、非线性混频、荧光和量子隧穿等[75-99]

精细且可控地调节dimer LSPR天线的间隙距离对控制天线谐振谱及hotspot与物质的作用强度非常重要。目前最可控、可重复的方法之一是将贵金属纳米颗粒置于一个镜面上,使颗粒与其镜像形成dimer LSPR天线,而间隙宽度由颗粒与镜面之间的物质厚度决定,比如若干单分子层或若干层二维材料[76,95,100-103]。近年来,科研工作者们在这种体系中观察到了大Purcell因子、奇异电致发光、单分子电致单光子源、荧光Rabi劈裂、单分子级别化学过程、强非线性光学、非局域和量子隧穿效应、皮米级hotspot的产生和湮灭,及可能来自于声子受激辐射的非线性拉曼散射等众多新奇现象[79,86,94-95,104-112]

通过聚焦空间径向偏振的激光来激发这种贵金属纳米颗粒-镜像等离激元天线的纵向偏振LSPR,在60 nm直径金球-单层分子-原子级平滑金面的体系中,在约3 nm直径的hotspot里得到超过109的拉曼电磁增强因子,同时各个hotspot的增强因子高度可重复,如图8所示。而且近场拉曼增强与远场散射谱在这个实验体系中也吻合,体现了hotspot的可控性[76]。厦门大学通过平面内dimer结构,将空间线偏振的激光高效耦合到贵金属纳米颗粒-镜像等离激元天线的纵向偏振LSPR,是实现可重复的极大拉曼增强因子的另一种方法,这对于开拓痕量物质的拉曼谱定量测量技术至关重要[113-114]

图 8. 聚焦空间径向偏振的激光激发60 nm直径金球-单层分子-原子级平滑金面体系[76]。(a)示意图,画出了金球的镜像;(b)在纵向LSPR谐振条件下,hotspot纵向电场能量密度分布的仿真结果,颜色表示相对于入射光的增强倍数;(c)吸附了单层4-nitrobenzenethiol分子的20个不同的金球在300 nW入射激光功率下的拉曼光谱,展示了极大增强倍数的可重复性

Fig. 8. Focusing radially polarized laser beam to excite structure which contains a 60-nm gold nanosphere, a monolayer of molecules, and an atomically flat gold surface[76]. (a) Schematic, with the gold nanosphere's mirror image; (b) simulation result for the vertical electric field component's intensity distribution in the hotspot under vertical LSPR resonance, with color scale indicating enhancement compared to the incident light; (c) experimental Raman spectra of 20 different gold nanospheres, each c

下载图片 查看所有图片

3.2 动态调控的等离激元天线

如果能够使贵金属纳米颗粒的位置在镜面上移动甚至得到精确的动态控制,将带来关于LSPR天线更丰富的科学研究内容和更广泛的技术应用范围。例如,LSPR谐振波长随间隙高度的灵敏变化被用来测量间隙内分子的大小变化[115-117],图9(a)中通过银纳米线-镜面结构使这种测量达到了亚皮米精度[117]。进一步研究指出在亚纳米高度的间隙中,分子和电子的复杂作用对LSPR灵敏度可能有重要的影响,需要更深入的理论研究[118]。 而在图9(b)中,基于DNA折纸技术,可以精细控制单个荧光分子在hotspot中的位置,从而以纳米分辨率测量hotspot的空间分布[119]。此外,在图9(c)中,将贵金属纳米颗粒置于折射率几乎等于空气的气凝胶上,能够对光场进行亚波长分辨率和矢量性的表征[120]

进一步,如果能够将贵金属纳米颗粒集成在SPM的针尖,对间隙尺寸实现纳米和亚纳米尺度的调控,同时对样品实现扫描成像,将大大提高LSPR天线探测技术的能力。在应用于增强拉曼散射时,这相当于表面增强和针尖增强两种技术的结合,既具有LSPR带来的更强的拉曼信号,又具有SPM技术的高空间分辨率。在此方向,中国科学技术大学实现了0.5 nm空间分辨率的单分子拉曼成像,单分子与LSPR的耦合调控,及若干分子间的电偶极矩耦合调控与测量,如图9(d)所示[121-124]

图 9. 动态调控的等离激元天线。(a)银纳米线-镜面结构的LSPR波长随间隙内分子的热胀冷缩而移动[117];(b)基于DNA折纸术控制单个荧光分子在hotspot中的位置[119];(c)用气凝胶上的金纳米球对聚焦光斑的空间偏振态进行扫描成像,右下子图显示成像结果[120];(d)STM结合LSPR效应对单个和若干个分子进行调控和测量(上两行是单个分子与等离激元的Fano耦合,底行是对两个分子电偶极矩耦合的扫描成像)[123-124]

Fig. 9. Dynamically tuned plasmonic antennas. (a) The LSPR of a silver nanowire-mirror structure is tuned by thermal expansion of molecules in the gap[117]; (b) the relative position of a single fluorescence molecule in a plasmonic hotspot is controlled by DNA origami[119]; (c) the spatial polarization state of a laser focal spot is imaged by scanning a gold nanosphere on aerogel, with an imaging result in the inset; (d) tuning and measurement of single and few molecules using an LSPR probe on STM (top

下载图片 查看所有图片

迄今,人们已发展出多种集成在SPM针尖的等离激元结构[125-141]图10(a)中,原子力显微镜(AFM)的探针被镀上一层金,然后用聚焦离子束刻蚀技术在针尖上刻出一个等离激元天线,天线在倒置暗场显微镜的倏逝波激发下形成LSPR[128]图10(b)中,镀金AFM探针的尖端有一个300 nm直径的金球,一对金球组成一个dimer LSPR天线,通过导电AFM来控制和精确测量天线间隙的尺寸,这项工作表征了电子非局域性和量子隧穿效应在LSPR散射谱上的体现[96]图10(c)的工作是在AFM探针上雕刻等离激元光栅结构将入射光波耦合到SPP,并将SPP聚焦到针尖附近的亚波长区域,以提高激发和收集效率[133]图10(d)中雕刻了螺旋形金光栅的AFM探针,不同手性的圆偏振光形成不同的光力作用[139]图10(e)为锥形光纤(或介质波导)与贵金属纳米线(或SPP波导)的耦合,该耦合能够极大提高近场光学显微镜探针的光波耦合与亚波长聚焦效率,并实现了1 nm空间分辨率的扫描拉曼谱成像[141-142]

图 10. 集成在SPM针尖的等离激元结构。(a)在AFM针尖用聚焦离子束刻蚀制作的LSPR天线[128];(b)一对AFM针尖上的金球组成dimer LSPR天线,通过导电AFM控制和测量天线间隙[96];(c)AFM探针上雕刻的金属光栅将入射光波耦合到SPP,并将SPP聚焦到针尖[133];(d)雕刻了螺旋形金光栅的AFM探针具有手性光力作用[139];(e)基于锥形光纤与银纳米线高效率耦合的近场光学显微镜探针[141]

Fig. 10. Plasmonic structures integrated on SPM probes. (a) An LSPR antenna on an AFM probe apex has been fabricated using focused ion beam milling[128]; (b) a pair of gold spheres on AFM probe apexes comprise a dimer LSPR antenna, with its gap size controlled and measured by conductive AFM[96]; (c) a metallic grating carved on an AFM probe couples incident light waves to SPPs, and focuses SPPs to the probe apex[133]; (d) a helical gold grating carved on an AFM probe is used to detect enantioselective op

下载图片 查看所有图片

3.3 锥形光纤探针尖端的等离激元天线

AFM探针上雕刻SPR结构的方法,具有一定的工艺难度,而且这种SPR结构的表面粗糙度不如化学合成的金属纳米颗粒,有可能影响hotspot的分布和可控性。因此,把化学合成的等离激元天线黏附到探针尖端是一种有益的集成SPM技术与LSPR天线的方式。其中一个典型方法是先用氢氟酸腐蚀或其他手段形成锥形光纤探针,在光纤探针上附着黏性材料,然后以光纤探针对平面衬底上的金属纳米颗粒作AFM扫描并将金属纳米颗粒粘到光纤探针的尖端,最终形成以金属纳米颗粒为探针的AFM扫描显微技术[143-144]。其中,光纤可以固定在音叉上,通过将音叉的振动转换为电信号来实现原子力反馈[145]

图11(a)中,罗彻斯特大学对金纳米颗粒探针接近另一个金纳米颗粒时四波混频信号的急遽上升进行了演示[146]。他们还观察到间隙高度非常小时,此上升趋势会发生突变。根据后来人们对量子隧穿效应的研究,可以想象此突变点可能对应着量子隧穿的产生。此外他们还提到,两个金纳米颗粒组成的探针能产生更大的四波混频信号,初步体现这种锥形光纤黏附贵金属纳米颗粒方案的结构多样性。在图11(b)中,这种探针也被用来接近单个分子,第一次完整测量了分子与金属纳米颗粒不断接近时荧光从增强到淬灭的整个过程,作者还观察到非局域效应[147]。可以看到,动态调控的等离激元天线能够大大提升人们对plasmonic hotspot内光-物质作用的表征能力。

图 11. 基于锥形光纤尖端金纳米颗粒探针的AFM技术。(a)金纳米颗粒探针接近另一个金纳米颗粒时,四波混频信号的急遽上升[146];(b)金纳米颗粒探针接近单个分子时,分子荧光从增强到淬灭的过程[147]

Fig. 11. AFM technology based on gold nanoparticle probes on tapered optical fibers' apexes. (a) As a gold nanoparticle probe approaches another gold nanoparticle, the four-wave-mixing signal increases significantly[146]; (b) as a gold nanoparticle probe approaches a single molecule, the molecular fluorescence experiences the process from enhancement to quenching[147]

下载图片 查看所有图片

虽然锥形光纤的折射率较小,但其线性散射相对于金属纳米颗粒的LSPR散射来说仍然是一个较大的背景,因此在前期各篇报道里也未对锥形光纤上金属纳米颗粒探针的LSPR散射光谱进行有效的测量[148-149]。最近,本课题组通过空间和偏振滤波的方法提取纵向LSPR模式的散射,并通过数学拟合扣除锥形光纤的背景散射,实现了对锥形光纤尖端100 nm金球LSPR散射谱的测量,并根据LSPR谐振波长的移动得到了对玻璃衬底上100 nm金球的扫描图像,如图12所示[150]

图 12. 以锥形光纤尖端100 nm金球的LSPR散射波长为待测变量,对玻璃衬底上的100 nm金球进行AFM扫描成像[150]。(a)金纳米球探针接近另一个金纳米球时,LSPR散射谱里纵向dimer模式的出现;(b)以金纳米球探针作AFM线扫描的形貌结果(上)和LSPR结果(下)

Fig. 12. Scanning LSPR microscopy of a 100 nm gold nanosphere on a glass substrate, using a 100 nm gold nanosphere on a tapered optical fiber's apex as the AFM probe, and its LSPR scattering spectrum as the imaged quantity[150]. (a) Schematic showing that as the gold nanosphere probe approaches a gold nanosphere target, a vertical dimer mode appears in the LSPR scattering spectrum; (b) line scanning result for morphology (top) and LSPR (bottom)

下载图片 查看所有图片

3.4 展望

在AFM技术的基础上,迄今人们已经发展出了对多种物理量的高空间分辨率测量方法,包括几何形貌、光场、磁场、静电场、力、温度、弹性模量、电容、压电响应和拉曼散射等。每一种新功能的实现都依赖于新型探针的发明。LSPR天线自身具有对表面环境折射率、分子吸附、拉曼散射、非线性光学、荧光和量子效应等多个参数或过程的高灵敏度响应。而锥形光纤端的LSPR天线,因其简便的制备方法、潜在的天线种类多样性和较低的背景散射,在SPM探测技术的未来发展中将有所作为。

4 结束语

结合光纤光学或SPM的光纤端等离激元探测技术,在科研、产业和经济等领域展示出引人入胜的前景。本文对其发展历程进行梳理,并在此基础上,结合作者的科研实践,对未来发展的重点、关键和潜在价值进行了讨论。

首先,对于光纤集成的SPR生物分子传感器,未来工作的中心之一是深入挖掘其方便、快速的核心价值,从而取代当前体积庞大、操作复杂的高端实验室仪器。在这方面,单模光纤端面SPR微腔以简便的dip-and-read测试方式、能够检验微量样本的探针、较高的灵敏度和稳定性、高效率的转移制备工艺等特点,对应用需求形成良好的响应。在此基础上,未来技术发展的关键是如何相对提高对目标分子的感应,及相对降低环境和杂质的干扰,从而解决复杂样品中低含量分子检测的难题。

其次,对于光纤集成SPR结构的声信号探测应用,如何基于SPP表面波的空间开放性,大大提升SPR对声信号的灵敏度,有可能是实现小型化、高灵敏度光纤水听器阵列的重要突破口。

最后,以锥形光纤尖端的LSPR天线为探针的SPM技术,能够以同一个LSPR天线或plasmonic hotspot对样品进行高精度调控和高空间分辨率测量,从而大大增加了对LSPR天线和其他对象之间相互作用的表征能力,同时也消除了基于固定天线的实验中不同天线之间hotspot差异对测量结果的影响,从而显著降低实验结果分析的复杂度。迄今,人们已经通过这类或类似技术实现了对分子发光、分子振动、非线性光学、量子隧穿、手性光力和线性LSPR散射等多种现象的测量。未来,结合LSPR探针结构的多样化设计,将能够实现更多的测量应用。

参考文献

[1] Institute[\s]{1}ofPhysics.[\s]{1}The[\s]{1}health[\s]{1}of[\s]{1}photonics:[\s]{1}how[\s]{1}light-based[\s]{1}technologies[\s]{1}are[\s]{1}solving[\s]{1}industry[\s]{1}challenges,[\s]{1}and[\s]{1}how[\s]{1}they[\s]{1}can[\s]{1}be[\s]{1}harnessed[\s]{1}to[\s]{1}impact[\s]{1}future[\s]{1}economic[\s]{1}growth[R].[\s]{1}UK:[\s]{1}IOP,[\s]{1}2018.[\s]{1}

[2] Andrade[\s]{1}G[\s]{1}FS,[\s]{1}Brolo[\s]{1}AG.[\s]{1}Nanoplasmonic[\s]{1}structures[\s]{1}in[\s]{1}optical[\s]{1}fibers[M][\s]{1}∥Dmitriev[\s]{1}A.[\s]{1}Nanoplasmonic[\s]{1}sensors.[\s]{1}Integrated[\s]{1}analytical[\s]{1}systems.[\s]{1}New[\s]{1}York,[\s]{1}NY:[\s]{1}Springer,[\s]{1}2012:[\s]{1}289-[\s]{1}315.[\s]{1}

[3] Kostovski G, Stoddart P R, Mitchell A. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies[J]. Advanced Materials, 2014, 26(23): 3798-3820.

[4] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883-3897.

[5] Vaiano P, Carotenuto B, Pisco M, et al. Lab on fiber technology for biological sensing applications[J]. Laser & Photonics Reviews, 2016, 10(6): 922-961.

[6] 刘飞飞, 张新平. 光纤端面集成金属光子结构传感器[J]. 激光与光电子学进展, 2017, 54(2): 020001.

    Liu F F, Zhang X P. Sensors based on metallic photonic structures integrated onto end facets of fibers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020001.

[7] Yang T, He X L, Zhou X, et al. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection[J]. Optics & Laser Technology, 2018, 101: 468-478.

[8] Xu Y, Bai P, Zhou X D, et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth[J]. Advanced Optical Materials, 2019, 7(9): 1801433.

[9] Dhawan A, Muth J F, Leonard D N, et al. Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(6): 2168-2173.

[10] Smythe E J, Dickey M D, Whitesides G M, et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces[J]. ACS Nano, 2009, 3(1): 59-65.

[11] Smythe E J, Dickey M D, Bao J M, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

[12] Lipomi D J, Martinez R V, Kats M A, et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving[J]. Nano Letters, 2011, 11(2): 632-636.

[13] Lin Y B, Zou Y, Lindquist R G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing[J]. Biomedical Optics Express, 2011, 2(3): 478-484.

[14] Feng S F, Zhang X P, Wang H, et al. Fiber coupled waveguide grating structures[J]. Applied Physics Letters, 2010, 96(13): 133101.

[15] Feng S F, Darmawi S, Henning T, et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber[J]. Small, 2012, 8(12): 1937-1944.

[16] Nguyen H, Sidiroglou F, Collins S F, et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures[J]. Applied Physics Letters, 2013, 103(19): 193116.

[17] Andrade G F S, Hayashi J G, Rahman M M, et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips[J]. Plasmonics, 2013, 8(2): 1113-1121.

[18] Micco A, Ricciardi A, Pisco M, et al. Optical fiber tip templating using direct focused ion beam milling[J]. Scientific Reports, 2015, 5: 15935.

[19] Principe M, Consales M, Micco A, et al. Optical fiber meta-tips[J]. Light: Science & Applications, 2017, 6(3): e16226.

[20] Scaravilli M, Micco A, Castaldi G, et al. Excitation of Bloch surface waves on an optical fiber tip[J]. Advanced Optical Materials, 2018, 6(19): 1800477.

[21] Liang Y Z, Zhang H, Zhu W Q, et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing[J]. ACS Sensors, 2017, 2(12): 1796-1804.

[22] Liang Y Z, Yu Z Y, Li L X, et al. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing[J]. Scientific Reports, 2019, 9: 7379.

[23] Liu Y, Guang J Y, Liu C, et al. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform[J]. Advanced Optical Materials, 2019, 7(19): 1900337.

[24] 杜怀超, 陈振宜, 陈娜, 等. 新型凹锥形表面增强拉曼散射光纤探针的制备[J]. 中国激光, 2017, 44(2): 0213001.

    Du H C, Chen Z Y, Chen N, et al. Fabrication of a novel concave cone surface-enhanced Raman scattering fiber probe[J]. Chinese Journal of Lasers, 2017, 44(2): 0213001.

[25] He X L, Yi H, Long J, et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing[J]. Applied Physics Letters, 2016, 108(23): 231105.

[26] White I M, Fan X D. On the performance quantification of resonant refractive index sensors[J]. Optics Express, 2008, 16(2): 1020-1028.

[27] Kim H M, Uh M, Jeong D H, et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 2019, 280: 183-191.

[28] Fan X D, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 2008, 620(1/2): 8-26.

[29] Lee B, Roh S, Park J. Current status of micro- and nano-structured optical fiber sensors[J]. Optical Fiber Technology, 2009, 15(3): 209-221.

[30] Slavík R, Homola J. tyrok J. Single-mode optical fiber surface plasmon resonance sensor[J]. Sensors and Actuators B: Chemical, 1999, 54(1/2): 74-79.

[31] Piliarik M, Homola J, Maníková Z, et al. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber[J]. Sensors and Actuators B: Chemical, 2003, 90(1/2/3): 236-242.

[32] Villatoro J, Monzón-Hernández D, Mejía E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors[J]. Applied Optics, 2003, 42(13): 2278-2283.

[33] Wu Y, Yao B C, Zhang A Q, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5): 1235-1237.

[34] Li D C, Wu J W, Wu P, et al. Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer[J]. Sensors and Actuators B: Chemical, 2015, 213: 295-304.

[35] Jauregui-Vazquez D, Haus J W. Negari A B H, et al. Bitapered fiber sensor: signal analysis[J]. Sensors and Actuators B: Chemical, 2015, 218: 105-110.

[36] Patnaik A, Senthilnathan K, Jha R. Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2437-2440.

[37] Shi S, Wang L B, Su R X, et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays[J]. Biosensors and Bioelectronics, 2015, 74: 454-460.

[38] Li L X, Liang Y Z, Liu Q, et al. Dual-channel fiber-optic biosensor for self-compensated refractive index measurement[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2110-2113.

[39] Lu[\s]{1}BY,[\s]{1}Lai[\s]{1}XC,[\s]{1}Zhang[\s]{1}PH,[\s]{1}et[\s]{1}al.[\s]{1}Roughened[\s]{1}cylindrical[\s]{1}gold[\s]{1}layer[\s]{1}with[\s]{1}curve[\s]{1}graphene[\s]{1}coating[\s]{1}for[\s]{1}enhanced[\s]{1}sensitivity[\s]{1}of[\s]{1}fiber[\s]{1}SPR[\s]{1}sensor[C]∥2017[\s]{1}19th[\s]{1}International[\s]{1}Conference[\s]{1}on[\s]{1}Solid-State[\s]{1}Sensors,[\s]{1}Actuators[\s]{1}and[\s]{1}Microsystems[\s]{1}(TRANSDUCERS),[\s]{1}June[\s]{1}18-22,[\s]{1}2017,[\s]{1}Kaohsiung,[\s]{1}Taiwan,[\s]{1}China.[\s]{1}New[\s]{1}York:[\s]{1}IEEE,[\s]{1}2017:[\s]{1}1991-[\s]{1}1994.[\s]{1}

[40] Kant R, Tabassum R, Gupta B D. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor[J]. Biosensors and Bioelectronics, 2018, 99: 637-645.

[41] Quero G, Consales M, Severino R, et al. Long period fiber grating nano-optrode for cancer biomarker detection[J]. Biosensors and Bioelectronics, 2016, 80: 590-600.

[42] Guo T, Liu F, Guan B O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 2016, 78: 19-33.

[43] 郭团. 等离子体共振光纤光栅生物传感器综述[J]. 光学学报, 2018, 38(3): 0328006.

    Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 2018, 38(3): 0328006.

[44] Lei Z Y, Zhou X, Yang J, et al. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing[J]. Applied Physics Letters, 2017, 110(17): 171107.

[45] Lei Z Y, Chen X, Wang X D, et al. Surface-emitting surface plasmon polariton laser in a second-order distributed feedback defect cavity[J]. ACS Photonics, 2019, 6(3): 612-619.

[46] Kim H T, Yu M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing[J]. Scientific Reports, 2019, 9: 1922.

[47] Zhang X P, Liu F F, Lin Y H. Direct transfer of metallic photonic structures onto end facets of optical fibers[J]. Frontiers in Physics, 2016, 4: 31.

[48] Jia P P, Yang Z L, Yang J, et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination[J]. ACS Sensors, 2016, 1(8): 1078-1083.

[49] Li S J, Li W D. Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet[J]. Optics Express, 2017, 25(23): 29380-29388.

[50] Wang T X, Cao R, Ning B, et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 2015, 107(15): 153702.

[51] Zhou X, Cai D, He X L, et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities[J]. Optics Letters, 2018, 43(4): 775-778.

[52] Ashkenazi S, Chao C Y, Guo L J, et al. Ultrasound detection using polymer microring optical resonator[J]. Applied Physics Letters, 2004, 85(22): 5418-5420.

[53] Huang S W, Chen S L, Ling T, et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 2008, 92(19): 193509.

[54] Zhang C, Ling T, Chen S L, et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 2014, 1(11): 1093-1098.

[55] Zhang C, Chen S L, Ling T, et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization[J]. IEEE Sensors Journal, 2015, 15(6): 3241-3248.

[56] Li H, Dong B Q, Zhang Z, et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy[J]. Scientific Reports, 2014, 4: 4496.

[57] Leinders S M, Westerveld W J, Pozo J, et al. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane[J]. Scientific Reports, 2015, 5: 14328.

[58] Zhang S L, Chen J, He S L. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor[J]. Optics Communications, 2017, 382: 113-118.

[59] Kim K H, Luo W, Zhang C, et al. Air-coupled ultrasound detection using capillary-based optical ring resonators[J]. Scientific Reports, 2017, 7: 109.

[60] Wei H M, Krishnaswamy S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection[J]. Optics Letters, 2017, 42(13): 2655-2658.

[61] Morris P, Hurrell A, Shaw A, et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 2009, 125(6): 3611-3622.

[62] Zhang E Z, Beard P C. A miniature all-optical photoacoustic imaging probe[J]. Proceedings of SPIE, 2011, 7899: 78991F.

[63] Allen T J, Zhang E, Beard P C. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor[J]. Proceedings of SPIE, 2015, 9323: 93230Z.

[64] Guggenheim J A, Li J, Allen T J, et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 2017, 11(11): 714-719.

[65] Wissmeyer G, Pleitez M A, Rosenthal A, et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 2018, 7(1): 53.

[66] RousselB,[\s]{1}CochardJ,[\s]{1}BouyeC.[\s]{1}Biophotonics[\s]{1}market:[\s]{1}technologies[\s]{1}and[\s]{1}market[\s]{1}analysis[R].[\s]{1}France:[\s]{1}European[\s]{1}Photonics[\s]{1}Industry[\s]{1}Consortium,Tematys[\s]{1}and[\s]{1}Yole[\s]{1}Développement,[\s]{1}2013.[\s]{1}

[67] MarketsandMarkets.[\s]{1}Label-free[\s]{1}detection[\s]{1}market[\s]{1}by[\s]{1}technology[\s]{1}(surface[\s]{1}plasmon[\s]{1}resonance,[\s]{1}bio-layer[\s]{1}interferometry),[\s]{1}products[\s]{1}(consumables,[\s]{1}microplates,[\s]{1}biosensor[\s]{1}chips),[\s]{1}applications[\s]{1}(binding[\s]{1}kinetics,[\s]{1}thermodynamics,[\s]{1}lead[\s]{1}generation),[\s]{1}end[\s]{1}user-global[\s]{1}forecast[\s]{1}to[\s]{1}2022[R].[\s]{1}Magarpatta[\s]{1}SEZ:[\s]{1}MarketsandMarkets[\s]{1}TM[\s]{1}Research[\s]{1}Private[\s]{1}Ltd.[\s]{1},[\s]{1}2017.[\s]{1}

[68] Thygesen K, Alpert J S, Jaffe A S, et al. Third universal definition of myocardial infarction[J]. European Heart Journal, 2012, 33(20): 2551-2567.

[69] Ansari R, Zhang E Z, Desjardins A E, et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 2018, 7(1): 75.

[70] Huynh[\s]{1}NT,[\s]{1}LuckaF,[\s]{1}Zhang[\s]{1}EZ,[\s]{1}et[\s]{1}al.[\s]{1}High[\s]{1}speed[\s]{1}multi-beam[\s]{1}Fabry-Perot[\s]{1}scanner[\s]{1}for[\s]{1}fast[\s]{1}high[\s]{1}resolution[\s]{1}photoacoustic[\s]{1}imaging[C]∥SPIE[\s]{1}Photonics[\s]{1}West[\s]{1}BIOS,[\s]{1}January[\s]{1}27-28,[\s]{1}2018,[\s]{1}San[\s]{1}Francisco,[\s]{1}USA.[\s]{1}USA:[\s]{1}SPIE,[\s]{1}2018:[\s]{1}10494-[\s]{1}107.[\s]{1}

[71] Guggenheim[\s]{1}JA,[\s]{1}Zhang[\s]{1}EZ,[\s]{1}Beard[\s]{1}PC.[\s]{1}Photoacoustic[\s]{1}imaging[\s]{1}with[\s]{1}highly[\s]{1}sensitive[\s]{1}2D[\s]{1}planoconcave[\s]{1}optical[\s]{1}microresonators[\s]{1}arrays[C]∥SPIE[\s]{1}Photonics[\s]{1}West[\s]{1}BIOS,[\s]{1}January[\s]{1}27-28,[\s]{1}2018,[\s]{1}San[\s]{1}Francisco,[\s]{1}USA.[\s]{1}USA:[\s]{1}SPIE,[\s]{1}2018:[\s]{1}10494-[\s]{1}68.[\s]{1}

[72] Schuller J A, Barnard E S, Cai W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

[73] Novotny L, van Hulst N. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-90.

[74] Cubukcu E, Kort E A, Crozier K B, et al. Plasmonic laser antenna[J]. Applied Physics Letters, 2006, 89(9): 093120.

[75] Ciracì C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074.

[76] Long J, Yi H, Li H Q, et al. Reproducible ultrahigh SERS enhancement in single deterministic hotspots using nanosphere-plane antennas under radially polarized excitation[J]. Scientific Reports, 2016, 6: 33218.

[77] Zhu W Q, Esteban R, Borisov A G, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7: 11495.

[78] Xu D, Xiong X, Wu L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics[J]. Advances in Optics and Photonics, 2018, 10(4): 703-756.

[79] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 2019, 18(7): 668-678.

[80] Jackman J A, Ferhan A R, Cho N J. Nanoplasmonic sensors for biointerfacial science[J]. Chemical Society Reviews, 2017, 46(12): 3615-3660.

[81] Sonnichsen C, Reinhard B M, Liphardt J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature Biotechnology, 2005, 23(6): 741-745.

[82] Liu G L, Yin Y D, Kunchakarra S, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting[J]. Nature Nanotechnology, 2006, 1(1): 47-52.

[83] Chen T H, Hong Y, Reinhard B M. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers[J]. Nano Letters, 2015, 15(8): 5349-5357.

[84] Camden J P, Dieringer J A, Wang Y M, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. Journal of the American Chemical Society, 2008, 130(38): 12616-12617.

[85] Wang D X, Zhu W Q, Best M D, et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas[J]. Nano Letters, 2013, 13(5): 2194-2198.

[86] Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1: 16021.

[87] Tang L, Kocabas S E, Latif S, et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nature Photonics, 2008, 2(4): 226-229.

[88] Miller D A B. Attojoule optoelectronics for low-energy information processing and communications[J]. Journal of Lightwave Technology, 2017, 35(3): 346-396.

[89] Ward D R, Hüser F, Pauly F, et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 2010, 5(10): 732-736.

[90] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

[91] Metzger B, Hentschel M, Schumacher T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 2014, 14(5): 2867-2872.

[92] Aouani H, Rahmani M, Navarro-Cía M, et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology, 2014, 9(4): 290-294.

[93] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2017, 2: 17010.

[94] Dong Z C, Zhang X L, Gao H Y, et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons[J]. Nature Photonics, 2010, 4(1): 50-54.

[95] Chikkaraddy R, de Nijs B, Benz F, et al. . Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 2016, 535(7610): 127-130.

[96] Savage K J, Hawkeye M M, Esteban R, et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 2012, 491(7425): 574-577.

[97] Tame M S. McEnery K R, Ozdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 2013, 9(6): 329-340.

[98] Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nature Communications, 2014, 5: 5228.

[99] Tan S F, Wu L. Yang J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 2014, 343(6178): 1496-1499.

[100] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[101] Liu B A, Wang D X, Shi C, et al. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation[J]. Optics Express, 2011, 19(11): 10049-10056.

[102] Mertens J, Eiden A L, Sigle D O, et al. Controlling subnanometer gaps in plasmonic dimers using graphene[J]. Nano Letters, 2013, 13(11): 5033-5038.

[103] Li G C, Zhang Q, Maier S A, et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry[J]. Nanophotonics, 2018, 7(12): 1865-1889.

[104] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano letters, 2010, 10(10): 4040-4048.

[105] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

[106] LongJ,[\s]{1}YangT.[\s]{1}Observation[\s]{1}of[\s]{1}single[\s]{1}molecule[\s]{1}dynamic[\s]{1}behaviors[\s]{1}with[\s]{1}SERS:[\s]{1}desorption[\s]{1}and[\s]{1}conformation[\s]{1}switching[C]∥Conference[\s]{1}on[\s]{1}Lasers[\s]{1}and[\s]{1}Electro-Optics,[\s]{1}June[\s]{1}5-10,[\s]{1}2016,[\s]{1}San[\s]{1}Jose,[\s]{1}California,[\s]{1}United[\s]{1}States.[\s]{1}Washington,[\s]{1}D.C.:[\s]{1}OSA,[\s]{1}2016:[\s]{1}FM4N.[\s]{1}6.[\s]{1}

[107] Choi H K, Park W H, Park C G, et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(13): 4673-4684.

[108] Benz F, Schmidt M K, Dreismann A, et al. Single-molecule optomechanics in “picocavities”[J]. Science, 2016, 354(6313): 726-729.

[109] Wang[\s]{1}XD,[\s]{1}YiH,[\s]{1}YangT.[\s]{1}Efficient[\s]{1}four-wave[\s]{1}mixing[\s]{1}in[\s]{1}loaded[\s]{1}nanoscale[\s]{1}plasmonic[\s]{1}hotspots[C]∥Nonlinear[\s]{1}Optics,[\s]{1}July[\s]{1}17-21,[\s]{1}2017,[\s]{1}Waikoloa,[\s]{1}Hawaii,[\s]{1}United[\s]{1}States.[\s]{1}Washington,[\s]{1}D.C.:[\s]{1}OSA,[\s]{1}2017:[\s]{1}NW1A.[\s]{1}6.[\s]{1}

[110] Zhang L, Yu Y J, Chen L G, et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 2017, 8: 580.

[111] YangT,[\s]{1}LongJ,[\s]{1}Wang[\s]{1}X[\s]{1}D.[\s]{1}Stepwise[\s]{1}quantum[\s]{1}phonon[\s]{1}pumping[\s]{1}in[\s]{1}plasmon-enhanced[\s]{1}Raman[\s]{1}scattering[J/OL].[\s]{1}([\s]{1}2017-05-30)[2019-08-01].[\s]{1}https:∥arxiv.org/abs/1601.[\s]{1}03324.[\s]{1}

[112] Lombardi A, Schmidt M K, Weller L, et al. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking[J]. Physical Review X, 2018, 8(1): 011016.

[113] Wang X, Li M H, Meng L Y, et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates[J]. ACS Nano, 2014, 8(1): 528-536.

[114] Lin K Q, Yi J, Zhong J H, et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering[J]. Nature Communications, 2017, 8: 14891.

[115] Hill R T, Mock J J, Hucknall A, et al. Plasmon ruler with angstrom length resolution[J]. ACS Nano, 2012, 6(10): 9237-9246.

[116] Mock J J, Hill R T, Tsai Y J, et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation[J]. Nano Letters, 2012, 12(4): 1757-1764.

[117] Chen W, Zhang S P, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons[J]. Nature Communications, 2018, 9: 801.

[118] Readman C, de Nijs B, Szabó I, et al. . Anomalously large spectral shifts near the quantum tunnelling limit in plasmonic rulers with subatomic resolution[J]. Nano Letters, 2019, 19(3): 2051-2058.

[119] Chikkaraddy R, Turek V A, Kongsuwan N, et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami[J]. Nano Letters, 2018, 18(1): 405-411.

[120] Yi H, Long J, Li H Q, et al. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots[J]. Optics Express, 2015, 23(7): 8338-8347.

[121] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.

[122] Jiang S, Zhang Y, Zhang R, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature Nanotechnology, 2015, 10(10): 865-869.

[123] Zhang Y, Meng Q S, Zhang L, et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity[J]. Nature Communications, 2017, 8: 15225.

[124] Zhang Y, Luo Y, Zhang Y, et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 2016, 531(7596): 623-627.

[125] Wang L, Xu X F. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging[J]. Applied Physics Letters, 2007, 90(26): 261105.

[126] Taminiau T H, Moerland R J, Segerink F B, et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence[J]. Nano Letters, 2007, 7(1): 28-33.

[127] Wang Y, Srituravanich W, Sun C, et al. Plasmonic nearfield scanning probe with high transmission[J]. Nano Letters, 2008, 8(9): 3041-3045.

[128] Zou Y S, Steinvurzel P, Yang T, et al. Surface plasmon resonances of optical antenna atomic force microscope tips[J]. Applied Physics Letters, 2009, 94(17): 171107.

[129] Burresi M, van Oosten D, Kampfrath T, et al. . Probing the magnetic field of light at optical frequencies[J]. Science, 2009, 326(5952): 550-553.

[130] Fleischer M, Weber-Bargioni A, Altoe M V, et al. Gold nanocone near-field scanning optical microscopy probes[J]. ACS Nano, 2011, 5(4): 2570-2579.

[131] Weber-Bargioni A, Schwartzberg A, Cornaglia M, et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes[J]. Nano Letters, 2011, 11(3): 1201-1207.

[132] Umakoshi T, Yano T A, Saito Y, et al. Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy[J]. Applied Physics Express, 2012, 5(5): 052001.

[133] Berweger S, Atkin J M, Olmon R L, et al. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 945-952.

[134] Kravtsov V, Ulbricht R, Atkin J M, et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5): 459-464.

[135] Fleischer M. Near-field scanning optical microscopy nanoprobes[J]. Nanotechnology Reviews, 2012, 1(4): 313-338.

[136] Huth F, Chuvilin A, Schnell M, et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy[J]. Nano Letters, 2013, 13(3): 1065-1072.

[137] Schuck P J, Weber-Bargioni A, Ashby P D, et al. Life beyond diffraction: opening new routes to materials characterization with next-generation optical near-field approaches[J]. Advanced Functional Materials, 2013, 23(20): 2539-2553.

[138] Maouli I, Taguchi A, Saito Y, et al. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging[J]. Applied Physics Express, 2015, 8(3): 032401.

[139] Zhao Y. Saleh A A E, van de Haar M A, et al. Nanoscopic control and quantification of enantioselective optical forces[J]. Nature Nanotechnology, 2017, 12(11): 1055-1059.

[140] Ma X Z, Zhu Y Z, Yu N, et al. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes[J]. Nano Letters, 2019, 19(1): 100-107.

[141] Kim S, Yu N, Ma X Z, et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy[J]. Nature Photonics, 2019, 13(9): 636-643.

[142] He X L, Yang L, Yang T. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides[J]. Optics Express, 2011, 19(14): 12865-12872.

[143] Kalkbrenner T, Ramstein M, Mlynek J, et al. A single gold particle as a probe for apertureless scanning near-field optical microscopy[J]. Journal of Microscopy, 2001, 202(1): 72-76.

[144] Kühn S, Håkanson U, Rogobete L, et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna[J]. Physical Review Letters, 2006, 97(1): 017402.

[145] NovotnyL,[\s]{1}HechtB.[\s]{1}Principles[\s]{1}of[\s]{1}nano-optics[M].[\s]{1}2nd[\s]{1}ed.[\s]{1}Cambridge:[\s]{1}Cambridge[\s]{1}University[\s]{1}Press,[\s]{1}2012.[\s]{1}

[146] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles[J]. Physical Review Letters, 2007, 98(2): 026104.

[147] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.

[148] Kim Z H, Leone S R. High-resolution apertureless near-field optical imaging using gold nanosphere probes[J]. The Journal of Physical Chemistry B, 2006, 110(40): 19804-19809.

[149] Olk P, Renger J, Wenzel M T, et al. Distance dependent spectral tuning of two coupled metal nanoparticles[J]. Nano Letters, 2008, 8(4): 1174-1178.

[150] ChenC,[\s]{1}Li[\s]{1}HQ,[\s]{1}LiH,[\s]{1}et[\s]{1}al.[\s]{1}Localized[\s]{1}surface[\s]{1}plasmon[\s]{1}resonance[\s]{1}scanning[\s]{1}microscopy[\s]{1}with[\s]{1}optical[\s]{1}antenna[\s]{1}on[\s]{1}fiber[\s]{1}taper[C]∥Proceedings[\s]{1}of[\s]{1}the[\s]{1}19th[\s]{1}IEEE[\s]{1}International[\s]{1}Conference[\s]{1}on[\s]{1}Nanotechnology,[\s]{1}Macao.[\s]{1}New[\s]{1}York:[\s]{1}IEEE,[\s]{1}2019.[\s]{1}

杨天, 陈成, 王晓丹, 周鑫, 雷泽雨. 光纤端的等离激元探测技术[J]. 激光与光电子学进展, 2019, 56(20): 202404. Tian Yang, Cheng Chen, Xiaodan Wang, Xin Zhou, Zeyu Lei. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!