激光技术, 2017, 41 (5): 654, 网络出版: 2017-09-21  

AlGaInAs/InP应变补偿多量子阱激光器

AlGaInAs/InP strain-compensated multiple quantum well laser
作者单位
1 太原理工大学 物理与光电工程学院, 晋中 030600
2 太原理工大学 信息工程学院, 晋中 030600
3 武汉电信器件有限公司,武汉 430074
摘要
为了优化在长距离光纤通讯系统中采用的1.31μm波长的量子阱激光器, 对AlGaInAs/InP材料的有源区应变补偿的量子阱激光器进行了设计研究。采用应变补偿的方法, 根据克龙尼克-潘纳模型理论计算出量子阱的能带结构, 设计出有源区由1.12%的压应变AlGaInAs阱层和0.4%的张应变AlGaInAs垒层构成。使用ALDS软件对所设计出的器件进行了建模仿真, 对其进行了阈值分析和稳态分析。结果表明, 在室温25℃下, 该激光器具有9mA的低阈值电流和0.4W/A较高的单面斜率效率; 在势垒层采用与势阱层应变相反的适当应变, 可以降低生长过程中的平均应变量, 保证有源区良好的生长, 改善量子阱结构的能带结构, 提高对载流子的限制能力, 降低阈值电流, 提高饱和功率, 改善器件的性能。
Abstract
In order to optimize the quantum well laser at 1.31μm wavelength in long distance optical fiber communication systems, strain compensated quantum well in active region of AlGaInAs/InP material was studied. Based on strain compensation method and Kronig-Panna model theory, the band structure of quantum well was calculated. The active region was consisted of 1.12% compressive strain AlGaInAs well layer and 0.4% tensile strain AlGaInAs barrier layer. ALDS software was used to simulate the design of the device and analyze the threshold and the steady state. The results show that the laser has a low threshold current of 9mA and a high slope efficiency of 0.4W/A at 25℃room temperature. In the potential barrier layer, the appropriate strain opposite to the strain of the potential well layer can reduce the average strain in the growth process, ensure the well growth of active zone, improve the band structure of quantum well effectively, enhance the limit ability of carriers, reduce threshold current, increase saturation power and improve device performance.
参考文献

[1] CHEN T H,CHE X H,ZHANG Y,et al. Study of materials for 1.3μm AlGaInAs/InP quantum well lasers [J]. Micronanoeletronic Technology, 2013,50(4): 220-223 (in Chinese).

[2] MA H,YI J X,JIN J Y, et al. Design and fabrication of 1.3μm uncooled AlGaInAs/InP strain-compensated quantum well lasers [J]. Acta Photonica Sinica, 2002,31(2):191-195 (in Chinese).

[3] SELMIC S R, CHOU T M, SIH J P,et al. Design and characterization of 1.3μm AlGaInAs-InP multiple-quantum-well lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001,7(2):340-349.

[4] TAKEMASA K, KUBOTA M, MUNAKATA T, et al. 1.3μm AlGaInAs buried-heterostructure lasers[J]. IEEE Photonics Technology Letters, 1999, 11(8):949-951.

[5] QUILLEC M, DAGUET C, BENCHIMOL J L, et al. Inx Ga1-x Asy P 1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy[J]. Applied Physics Letters, 1982, 40(4):325-326.

[6] XU H W. Structural design and epitaxial growth of 852nm laser diode[D].Changchun:Chinese Academy of Sciences,2012:25-26 (in Chinese).

[7] CHEN F Ch,SHI Y L. Design and fabrication of a 1064nm strain double quantum well laser[J]. Electronic World, 2014(15):157-157 (in Chinese).

[8] MEI T. Interpolation of quaternary Ⅲ-Ⅴ alloy parameters with surface bowing estimations[J]. Journal of Applied Physics, 2007, 101(1):013520.

[9] JIN Zh J. InP based InGaAlAs/InGaAsSb strained quantum well laser materials and design[D].Changchun:Changchun University of Science and Technology, 2008:30-39 (in Chinese).

[10] ISHIKAWA T, BOWERS J E. Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well[J]. IEEE Journal of Quantum Electronics, 1994, 30(2):562-570.

[11] YEKTA V B, KAATUZIAN H, YEKTA V B, et al. Simulation and temperature characteristics improvement of 1.3μm AlGaInAs multiple quantum well laser[J]. International Journal of Optics & Applications, 2014, 4(2):46-53.

[12] JIANG J P. Semiconductor laser[M]. Beijing:Publishing House of Electronics Industry, 2000:211-220 (in Chinese).

[13] YAN Ch L, QIN L, NING Y Q, et al. Calculation of energy band structure of GaInAs/GaAs quantum well[J]. Laser Journal, 2004, 25(5):29-31(in Chinese).

[14] GUO J, XIE Sh, MAO L H, et al. oprimization of quantum well structure for GaAs/AlGaAs ring lasers[J]. Laser Technology,2015, 39(5):654-657(in Chinese).

[15] HUA L L, YANG Y. Analysis and computation of band offset of strained quantum wells[J]. Laser & Optoelectronics Progress, 2013,50(5):051404(in Chinese).

朱天雄, 贾华宇, 李灯熬, 罗飚, 刘应军, 田彦婷. AlGaInAs/InP应变补偿多量子阱激光器[J]. 激光技术, 2017, 41(5): 654. ZHU Tianxiong, JIA Huayu, LI Dengao, LUO Biao, LIU Yingjun, TIAN Yanting. AlGaInAs/InP strain-compensated multiple quantum well laser[J]. Laser Technology, 2017, 41(5): 654.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!