应用光学, 2019, 40 (3): 505, 网络出版: 2019-06-10   

超高速相干光通信两步步长优化CMA算法

Two-step stage optimized CMA algorithm in super-high coherent optical telecommunications
作者单位
清华大学 精密仪器系 精密测试技术与仪器国家重点实验室,北京 100084
摘要
在超高速相干光通信中,对偏振解复用损伤和偏振模色散的补偿一般采用恒模算法(constant modulus algorithm, CMA)。标准的CMA算法具有自适应动态均衡的功能,加权信号根据输入信号进行不断更新,是一种目前流行的盲均衡算法。通常在CMA算法中,步长系数的取值严重影响着算法收敛、误差矢量幅度(error vector magnitude, EVM)和误码率(bit error ratio, BER)性能评价。提出了一种优化的CMA算法,具有两步步长系数,可标记误差矢量函数曲线稳定时的区间。经过计算验证表明,优化的CMA算法具有不同程度的解调性能改善,能够降低X、Y偏振态的EVM,具备较好的应用性。
Abstract
In ultra-high coherent optical telecommunications, constant modulus algorithm (CMA) is usually adopted for compensation of impairment of polarization demultiplexing and polarization mode dispersion (PMD). Standard CMA has a function of self-adapt dynamic equalizer, with coefficient signal constantly updating according to input signal. It is a popular blind-equalizing algorithm at present. In CMA algorithm, the value of step-size usually severely influences the performance evaluation of algorithm convergence, error vector magnitude (EVM), and bit error ratio (BER). This paper presents an optimized CMA algorithm of two-step size coefficients, which is capable of labeling stable span of error vector function curve. The verification of calculation shows, the optimized CMA algorithm can improve the demodulation performance, decrease the EVM of X and Y polarization state, validating its preferable applicability.
参考文献

[1] BIRK M, GERARD P, CURTO R, et al. Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link[C]. //Optical Fiber Communications/National Fiber Optic Engineers Conference, USA:IEEE,2010.

[2] ZHANG J W, YU J J, ZHU B Y, et al. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10,130- and 6,078 km terrestrial fiber links[J]. Optics Express, 2015, 23(13):16540-16545.

[3] XU T H, LI J, JACOBSEN G, et al. Field trial over 820 km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission[J]. Optics Communications, 2015, 353:133-138.

[4] XU C, GAO G J, CHEN S, et al. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping[J]. Optics Express, 2016, 24(33):26678-26686.

[5] LIU B, WU Z C, FU S N, et al. On-field measurement trial of 4x128 Gbps PDM-QPSK signals by linear optical sampling[J]. Optics Communications, 2017, 384:36-40.

[6] DONG Z, YU J J, JIA Z S, et al. 7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation[J]. IEEE Photonics Technology Letters, 2012, 24(13):1157-1159.

[7] 吴琦, 薛海东, 刘召庆, 等. 高速Cameralink视频信号的光纤传输系统设计[J]. 应用光学, 2018, 39(2): 284-289.

    WU Qi, XUE Haidong, LIU Zhaoqing, et al. Design of optical fiber transmission system for high speed Cameralink video signal[J]. Journal of Applied Optics, 2018, 39(2): 284-289.

[8] 李唐军,王目光,张建勇,等. 光纤通信原理[M]. 北京:清华大学出版社, 北京交通大学出版社, 2015: 106-137.

    LI Tangjun, WANG Muguang, ZHANG Jianyong, et al. Fiber communications theory[M]. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2015:106-137.

[9] 陶金晶.高速相干光通信系统中关键技术的研究[D].北京:北京邮电大学,2014.

    TAO Jinjing. Research on several key technologies for high-speed coherent optical communication systems[D]. Beijing: Beijing University of Posts and Telecommunications, 2014.

[10] 易小刚.数字相干PM-QPSK光传输系统中的非线性损伤与系统的性能估计[D].北京:北京邮电大学,2013.

    YI Xiaogang. Nonlinearities in digital coherent PM-QPSK transmission systems and estimation of system performance[D]. Beijing: Beijing University of Posts and Telecommunications,2013.

[11] ROUDAS I, VGENIS A, PETROU C S, et al. Optimal polarization demultiplexing for coherent optical communications systems[J]. Journal of Lightwave Technology, 2010, 28(7):1121-1134.

[12] 易安林. 偏振复用光通信系统处理技术研究[D]. 成都:西南交通大学, 2013.

    YI Anlin. Signal processing technologies in polarization division multiplexing systems[D]. Chengdu: Southwest Jiaotong University, 2013.

[13] 缪厚勋. 光纤通信系统中的偏振模色散补偿[D]. 北京:清华大学,2004.

    MIAO Houxun. Polarization mode dispersion compensation in optical fiber communication systems[D]. Beijing: Tsinghua University, 2004.

[14] ZHOU J H, ZHENG G Z, WU J J. Constant modulus algorithm with reduced probability of singularity enabled by PDL mitigation[J]. Journal of Lightwave Technology, 2017, 35(13): 2685-2694.

[15] KOGELNIK H, JOPSON R M, NELSON L E. Optical fiber telecommunications IV (Vol. B)[M]. San Diego: Academic Press,2002: 725-861.

[16] ANDREAS L, NORIAKI K, CHEN Y K, et al. A real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA[C]. Optical Fiber Communications/National Fiber Optics Engineers Conference, USA:IEEE,2008.

[17] KANEDA N, LEVEN A. Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation[J]. IEEE Photonics Technology Letters, 2009, 21(4): 203-205.

[18] JOHANNISSON P, SJDIN M, KARLSSON M, et al. Modified constant modulus algorithm for polarization-switched QPSK[J]. Optics Express, 2011, 19(8): 7734-7741.

[19] 刘显著, 王天枢, 陈俊达, 等. 采用QPSK调制的50 Gbit/s高速大气激光通信传输特性研究[J]. 应用光学, 2018, 39(5): 757-761.

    LIU Xianzhu, WANG Tianshu, CHEN Junda, et al. Transmission performance of 50 Gbit/s high-speed laser communications with QPSK modulation[J]. Journal of Applied Optics, 2018, 39(5): 757-761.

[20] 崔云鹏. 偏振复用系统中解复用技术的研究[D]. 长春: 吉林大学, 2011.

    CUI Yunpeng. Research on polarization demultiplexing technology in polarization multiplexing system[D]. Changchun: Jilin University, 2011.

[21] 李新. 相干检测中的DSP算法和仿真研究[D]. 北京: 北京邮电大学, 2012.

    LI Xin. Research on DSP algorithm and simulation in optical coherent detection[D]. Beijing: Beijing University of Posts and Telecom, 2012.

[22] 邸雪静, 童程, 张霞, 等. 高速相干光通信系统中的自适应步长恒模算法[J]. 光学学报, 2012, 32(10): 53-57.

    DI Xuejing, TONG Cheng, ZHANG Xia, et al. Adaptive step-size constant-modulus algorithm for high-speed optical coherent communication system[J]. Acta Optica Sinica, 2012, 32(10) : 53-57.

钟昆, 杨怀栋. 超高速相干光通信两步步长优化CMA算法[J]. 应用光学, 2019, 40(3): 505. ZHONG Kun, YANG Huaidong. Two-step stage optimized CMA algorithm in super-high coherent optical telecommunications[J]. Journal of Applied Optics, 2019, 40(3): 505.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!