激光与光电子学进展, 2017, 54 (10): 101411, 网络出版: 2017-10-09   

激光冲击316L不锈钢焊接件的模拟分析与试验研究

Simulation Analysis and Experimental Study of 316L Stainless Steel Weldments Processed by Laser Shock Peening
作者单位
江苏大学机械工程学院, 江苏 镇江 212013
摘要
采用ABAQUS有限元分析软件, 建立了一种“焊接+激光冲击强化(LSP)”应力分布模型, 研究了不同能量LSP对316L不锈钢氩弧焊焊缝区域应力分布及应变的影响。研究结果表明, 由该模型模拟得到的残余应力分布与试验结果一致。LSP在焊缝区域表面诱导出残余压应力层, 消除了焊接热影响引起的残余拉应力; 随着激光脉冲能量的增大, 激光冲击诱导的残余压应力以及压应力层厚度增加, 但增加幅度减小; 焊接件表面应变峰值随着激光脉冲能量的增加而增大。
Abstract
A stress distribution model of "welding+laser shock peening (LSP)" is established by using the ABAQUS finite element analysis software, and the effect of LSP with different pulse energies on the stress distribution and strain in the welding zones of 316L stainless steels processed by the argon-arc welding is studied. The study results show that the residual stress distribution simulated by this model is similar to the experimental result. LSP can induce a residual compressive stress layer in the welding zone to eliminate the residual tensile stress induced by the welding thermal influence. With the increase of laser pulse energy, the residual compressive stress and the depth of residual compressive stress layer increase, but the increase becomes smaller. The peak value of strain on the weldment surface increases with the increase of laser pulse energy.
参考文献

[1] 王若林, 高巍, 叶肖伟, 等. 焊接结构疲劳破坏的若干问题[J]. 武汉大学学报(工学版), 2013,46(2): 194-198.

    Wang Ruolin, Gao Wei, Ye Xiaowei, et al. Some issues of fatigue failure of welded structures[J]. Engineering Journal of Wuhan University, 2013, 46(2): 194-198.

[2] Yousefieh M, Shamanian M, Saatchi A. Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds[J]. Journal of Iron and Steel Research International, 2011, 18(9): 65-69.

[3] Ding J H, Zhang L, Li D P, et al. Corrosion and stress corrosion cracking behavior of 316L austenitic stainless steel in high H2S-CO2-Cl- environment[J]. Journal of Materials Science, 2013, 48(10): 3708-3715.

[4] 徐济进, 陈立功, 倪纯珍. 机械应力消除法对焊接残余应力的影响[J]. 机械工程学报, 2009, 45(9): 291-295.

    Xu Jijin, Chen Ligong, Ni Chunzhen. Effect of mechanical stress relieving method on welding residual stress[J]. Journal of Mechanical Engineering, 2009, 45(9): 291-295.

[5] 张书奎, 罗植廷. 浅析焊接残余应力及其消除方法[J]. 冶金动力, 1996, (6): 38-41.

    Zhang Shukui, Luo Zhiting. Analysis of residual stress produced by welding and its elimination methods[J]. Metallurgical Power, 1996, (6): 38-41.

[6] 刘凯欣, 张晋香, 刘颖, 等. 爆炸法消除焊接接头残余应力的数值模拟[J]. 应用力学学报, 2004, 21(2): 10-15.

    Liu Kaixin, Zhang Jinxiang, Liu Ying, et al. Numerical simulation on the relief of welding residual stress through an explosive treatment[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 10-15.

[7] 项建云, 葛茂忠, 张永康. AZ31B镁合金交流氩弧焊接件激光冲击强化实验[J]. 光学学报, 2013, 33(s1): s114015.

    Xiang Jianyun, Ge Maozhong, Zhang Yongkang. Experiment of laser shock strengthening tungsten inert-gas welded AZ31B magnesium alloy[J]. Acta Optica Sinica, 2013, 33(s1): s114015.

[8] 殷苏民, 张超, 王匀, 等. 激光冲击对不锈钢焊接结构影响的数值分析[J]. 中国激光, 2013,40(5): 0503005.

    Yin Sumin, Zhang Chao, Wang Yun, et al. Numerical analysis for the structure effect on stainless steel welding treated by laser shock processing[J]. Chinese J Lasers, 2013, 40(5): 0503005.

[9] Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering A, 2006, 417(1/2): 334-340.

[10] 徐国建, 钟立明, 王虹, 等. 激光冲击强化铝合金焊接接头的性能[J]. 中国激光, 2014, 41(6): 0603007.

    Xu Guojian, Zhong Liming, Wang Hong, et al. Performance of aluminum alloy welded joints by laser shock processing[J]. Chinese J Lasers, 2014,41(6): 0603007.

[11] 李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19.

    Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.

[12] See D W, Dulaney J L, Clauer A H, et al. The air force manufacturing technology laser peening initiative[J]. Surface Engineering, 2002,18(1): 32-36.

[13] 苏纯, 周建忠, 黄舒, 等. 激光冲击强化对6061-T6铝合金TIG焊接接头疲劳性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061403.

    Su Chun, Zhou Jianzhong, Huang Shu, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061403.

[14] 鲁金忠, 张永康, 孔德军, 等. 激光冲击强化对TC4电子束焊缝机械性能的影响[J]. 江苏大学学报(自然科学版), 2006, 27(3): 207-210.

    Lu Jinzhong, Zhang Yongkang, Kong Dejun, et al. Effects on mechanical properties of TC4 welding line by laser shocking processing[J]. Journal of Jiangsu University (Natural Science Edition), 2006, 27(3): 207-210.

[15] 鲁金忠, 张永康, 钱小明, 等. 激光处理对Ti6A14V焊缝表面应力状况的影响[J]. 北京航空航天大学学报, 2007, 33(7): 869-872.

    Lu Jinzhong, Zhang Yongkang, Qian Xiaoming, et al. Effects on residual stresses of Ti6Al4V electron beam welding line by laser shock processing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 869-872.

[16] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[17] 周男, 乔登江. 脉冲束辐照材料动力学[M]. 北京: 国防工业出版社, 2002.

    Zhou Nan, Qiao Dengjiang. Materials dynamics under pulse beam radiation[M]. Beijing: National Defense Industry Press, 2002.

卢海飞, 鲁金忠, 张文泉, 罗开玉. 激光冲击316L不锈钢焊接件的模拟分析与试验研究[J]. 激光与光电子学进展, 2017, 54(10): 101411. Lu Haifei, Lu Jinzhong, Zhang Wenquan, Luo Kaiyu. Simulation Analysis and Experimental Study of 316L Stainless Steel Weldments Processed by Laser Shock Peening[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101411.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!