Frontiers of Optoelectronics, 2019, 12 (4): 352–364, 网络出版: 2020-01-09  

Antimony doped Cs2SnCl6 with bright and stable

Antimony doped Cs2SnCl6 with bright and stable emission
作者单位
1 Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4: Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.
参考文献

[1] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

[2] Zhang L, Yang X, Jiang Q,Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8: 15640

[3] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222– 1225

[4] Tan Z K, Moghaddam R S, LaiML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9 (9): 687–692

[5] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white lightemitting diodes. Advanced Functional Materials, 2016, 26(15): 2584

[6] Zhang H, Wang X, Liao Q, Xu Z, Li H, Zheng L, Fu H. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7): 1604382

[7] Ge R, Qin F, Hu L, Xiong S, Zhou Y. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11(4): 360–366

[8] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248

[9] ao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253

[10] Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834

[11] Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello A J, Kovalenko M V. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869–1877

[12] Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H. Roomtemperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials, 2018, 30(30): e1800764

[13] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X,Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696

[14] Zhang F, Zhong H, Chen C,Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533–4542

[15] Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732

[16] Wei Y, Xiao H, Xie Z, Liang S, Liang S, Cai X, Huang S, Al Kheraif A A, Jang H S, Cheng Z, Lin J. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 2018, 6(11): 1701343

[17] Huang S, Wang B, Zhang Q, Li Z, Shan A, Li L. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Advanced Optical Materials, 2018, 6(6): 1701106

[18] Yang S, Fu W, Zhang Z, Chen H, Li C. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482

[19] Leng M, Chen Z, Yang Y, Li Z, Zeng K, Li K, Niu G, He Y, Zhou Q, Tang J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie, 2016, 55(48): 15012–15016

[20] Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11(9): 9294–9302

[21] Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. Allinorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446

[22] Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083

[23] Zhou C, Lin H, Tian Y, Yuan Z, Clark R, Chen B, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B. Luminescent zerodimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586–593

[24] Zhou C, Worku M, Neu J, Lin H, Tian Y, Lee S, Zhou Y, Han D, Chen S, Hao A, Djurovich P I, Siegrist T, Du M H, Ma B. Facile preparation of light emitting organic metal halide crystals with nearunity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374–2378

[25] Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M, Klimov V I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961

[26] Hu Q, Li Z, Tan Z, Song H, Ge C, Niu G, Han J, Tang J. Rare earth ion-doped CsPbBr3 nanocrystals. Advanced Optical Materials, 2018, 6(2): 1700864

[27] Zhou C, Tian Y, Khabou O,Worku M, Zhou Y, Hurley J, Lin H, Ma B. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions. ACS Applied Materials & Interfaces, 2017, 9(46): 40446–40451

[28] Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bidoped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131

[29] Costa D, Marcus P. Electronic core levels of hydroxyls at the surface of chromia related to their XPS O 1s signature: a DFT + U study. Surface Science, 2010, 604(11–12): 932–938

[30] Hwang S M, Kim J, Kim Y, Kim Y. Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(46): 17946–17951

[31] Yang X, Ma J, Wang H, Chai Y, Yuan R. Partially reduced Sb/ Sb2O3@C spheres with enhanced electrochemical performance for lithium ion storage. Materials Chemistry and Physics, 2018, 213: 208–212

[32] Ali A, Hasanain S K, Ali T, Sultan M. Improvement of antimony sulfide photo bsorber performance by interface modification in Sb2S3-ZnO hybrid nanostructures. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 87: 20–26

[33] Yang P, Deng P, Yin Z. Concentration quenching in Yb:YAG. Journal of Luminescence, 2002, 97(1): 51–54

[34] Oomen E W J L, Dirksen G J, Smit W M A, Blasse G. On the luminescence of the Sb3+ ion in Cs2NaMBr6 (M = Sc,Y,La). Journal of Physics C, Solid State Physics, 1987, 20(8): 1161–1171

[35] Oomen E W J L, Smit W M A, Blasse G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M= Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics C, Solid State Physics, 1986, 19(17): 3263–3272

[36] Reisfeld R, Boehm L, Barnett B. Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses. Journal of Solid State Chemistry, 1975, 15(2): 140–150

[37] Zhou G, Jiang X, Zhao J, Molokeev M, Lin Z, Liu Q, Xia Z. Twodimensional- layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Applied Materials & Interfaces, 2018, 10(29): 24648–24655

[38] Oomen E W J L, Dirksen G J. Crystal growth and luminescence of Sb3+-doped Cs2 NaMCl6 (M = Sc, Y, La). Materials Research Bulletin, 1985, 20(4): 453–457

[39] Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer, 1994

[40] Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172

Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable[J]. Frontiers of Optoelectronics, 2019, 12(4): 352–364. Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Frontiers of Optoelectronics, 2019, 12(4): 352–364.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!