强激光与粒子束, 2018, 30 (12): 125001, 网络出版: 2019-01-18   

聚龙一号装置磁驱动加载实验的全电路模拟

Full circuit calculation of magnetically driven experiment on PTS facility
作者单位
1 中国工程物理研究院 流体物理研究所, 四川 绵阳 621900
2 中国科学技术大学 工程与应用物理系, 合肥 230026
摘要
聚龙一号装置由24路模块并联组成, 通过调整24路模块中激光触发气体开关的导通时序可实现负载电流波形的精确调节, 以满足磁驱动加载实验所要求的负载电流波形灵活调节的需求。针对聚龙一号装置开展的磁驱动加载实验, 建立了能够描述能量从Marx发生器开始至负载整个传输过程的全电路模型, 开发了相应的电路计算程序, 并基于实验结果对计算程序进行了校验, 电路模拟结果与实验结果符合较好。电路模拟程序的计算效率比采用Pspice软件进行全电路计算的效率显著提高, 其不仅可应用于在给定激光触发气体开关导通时序的情况下对聚龙一号装置的输出特性进行预测和评估, 同时也为负载电流波形调节的方案设计提供了一种有效工具。
Abstract
The Primary Test Stand(PTS) facility is composed of 24 modules combined in parallel. The load current waveform of the PTS could be shaped by adjusting the closing time of the 24 laser triggered gas switches in each module to perform the magnetically driven experiments. A full circuit model describing the magnetically driven experiments on the PTS facility is proposed. The circuit model includes each elements of the machine from the Marx generator to the load. The load current given by circuit simulation is compared with the experiment result, and they agree with each other very well. The calculation efficiency of the circuit simulation code is much higher than that of Pspice software. The circuit simulation code is not only applicable to evaluating the PTS performance by assuming the closing time of the 24 laser triggered gas switches, but also an effective designing tool for the magnetically driven experiments.
参考文献

[1] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality-A review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1(1): 48-58.

[2] Reisman D B, Toor A, Cauble R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633.

[3] Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310.

[4] Hall C A. Isentropic compression experiments on the Sandia Z accelerator[J]. Physics of Plasmas, 2000, 7(5): 2069-2075.

[5] Xia Minghe, Li Fengping, Ji Ce, et al. Current pulse shaping of the load current on PTS[J]. AIP Advances, 2016, 6: 025319.

[6] 夏明鹤, 李丰平, 计策, 等. 聚龙一号装置波形调节[J]. 强激光与粒子束, 2016, 28: 055003. (Xia Minghe, Li Fengping, Ji Ce, et al. Current pulse shaping of load on Primary Test Stand facility. High Power Laser and Particle Beams, 2016, 28: 055003)

[7] 邹文康, 郭帆, 王贵林, 等. 聚龙一号装置磁绝缘传输线的电流损失特性[J]. 高电压技术, 2015, 41(6): 1844-1851. (Zou Wenkang, Guo Fan, Wang Guilin, et al. Current loss properties of the magnetically insulated transmission line in the PTS facility. High Voltage Engineering, 2015, 41(6): 1844-1851)

[8] Stygar W A, Corcoran P A, Ives H C, et al. 55-TW magnetically insulated transmission-line system: Design, simulations, and performance[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 120401.

[9] Bergeron K D. Equivalent circuit approach to long magnetically insulated transmission lines[J]. Journal of Applied Physics, 1977, 48(7): 3065-3069.

[10] Hutsel B T, Corcoran P A, Cuneo M E, et al. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 030401.

[11] Weseloh W N. TLCODE-A transmission line code for pulsed power design[C]//Proceedings of 7th IEEE International Pulsed Power Conference. 1989: 989-992.

[12] Spielman R B, Gryazin Y. Screamer: A optimized pulsed-power circuit-analysis tool[C]//Proceedings of IEEE Power Modulator and High Voltage Conference. 2016: 269-274.

[13] Samokhin A A. High power electromagnetic wave in a magnetically insulated transmission line of the ANGARA-5-1 facility[J]. Plasma Physics Reports, 2010, 36(8): 682-698.

[14] Samokhin A A. Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line[J]. Plasma Physics Reports, 2010, 36(2): 149-163.

[15] 薛创, 丁宁, 张扬, 等. 聚龙一号电磁脉冲形成与传输过程的全电路模拟[J]. 强激光与粒子束, 2016, 28: 015014. (Xue Chuang, Ding Ning, Zhang Yang, et al. Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility. High Power Laser and Particle Beams, 2016, 28: 015014)

[16] Hu Yixiang, Qiu Ai’ci, Huang Tao, et al. Experimental and simulation studies of a 1-m-long magnetically insulated transmission line with 2-cm anode-cathode gap[J]. IEEE Trans Plasma Science, 2012, 40(6): 1743-1748.

[17] Zou Wenkang, Guo Fan, Chen Lin, et al. Full circuit calculation for electromagnetic pulse transmission in a high current facility[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 110401.

[18] 宋盛义, 关永超, 顾元朝, 等. 初级试验平台磁绝缘传输线的电路模拟[J]. 强激光与粒子束, 2008, 20(5): 833-838. (Song Shengyi, Guan Yongchao, Gu Yuanchao, et al. Circuit modeling for magnetically insulated transmission lines on primary test stand. High Power Laser and Particle Beams, 2008, 20(5): 833-838)

[19] Guo Fan, Zou Wenkang, Gong Boyi, et al. Modeling power flow in the induction cavity with a two dimensional circuit simulation[J]. Physical Review Accelerators and Beams, 2017, 20: 020401.

[20] 何安, 丁瑜, 康军军, 等. “聚龙一号”装置24路模块精确控制技术[J]. 强激光与粒子束, 2018, 30: 035003. (He An, Ding Yu, Kang Junjun, et al. Accurate control technology of 24 modules in PTS. High Power Laser and Particle Beams, 2018, 30: 035003)

[21] Hinshelwood D D. BERTHA-a versatile transmission line and circuit code[R]. Naval Research Laboratory Memorandum Report No. 5185, 1983.

[22] 邹文康, 关永超, 宋盛义, 等. 基于波过程的传输线模拟方法[J]. 强激光与粒子束, 2007, 19(9): 1571-1574. (Zou Wenkang, Guan Yongchao, Song Shengyi, et al. Transmission line simulation method based on wave process. High Power Laser and Particle Beams, 2007, 19(9): 1571-1574 )

[23] 郭帆, 邹文康, 陈林. 一种磁绝缘传输线真空功率流的电路计算方法[J]. 强激光与粒子束, 2013, 25(7): 1845-1850. (Guo Fan, Zou Wenkang, Chen Lin. A method for circuit simulation the vacuum power flow in magnetically insulated transmission line. High Power Laser and Particle Beams, 2013, 25(7): 1845-1850)

[24] 王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63: 196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS. Acta Physica Sinica, 2014, 63: 196201)

[25] 王贵林, 李军, 张朝辉, 等. “阳”加速器磁驱动平面飞片实验和速度计算校验[J]. 强激光与粒子束, 2014, 26: 015101. (Wang Guilin, Li Jun, Zhang Zhaohui, et al. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator. High Power Laser and Particle Beams, 2014, 26: 015101)

[26] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010. (Han Min, Zou Xiaobing, Zhang Guixin. Pulsed power technology. Beijing: Tsinghua University Press, 2010)

[27] Ottinger P F, Schumer J W. Rescaling of equilibrium magnetically insulated flow theory based on results from particle-in-cell simulations[J]. Physics of Plasmas, 2006, 13: 063109.

郭帆, 王贵林, 邹文康, 陈林, 谢卫平. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30(12): 125001. Guo Fan, Wang Guilin, Zou Wenkang, Chen Lin, Xie Weiping. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30(12): 125001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!