太赫兹科学与电子信息学报, 2018, 16 (4): 576, 网络出版: 2018-09-12   

GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射

Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals
作者单位
江西师范大学 物理与通信电子学院, 江西 南昌 330022
引用该论文

黄俊滔, 饶志明, 谢芳森. GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射[J]. 太赫兹科学与电子信息学报, 2018, 16(4): 576.

HUANG Juntao, RAO Zhiming, XIE Fangsen. Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals[J]. Journal of terahertz science and electronic information technology, 2018, 16(4): 576.

参考文献

[1] 姚建铨. 太赫兹技术及其应用[J]. 重庆邮电大学学报(自然科学版), 2010,22(6):703-707. (YAO Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University Posts and Telecommunications(Natural Science Edition), 2010,22(6):703-707.)

[2] 刘盛纲. 太赫兹科学技术的新发展[J]. 中国基础科学, 2006,8(1):7-12. (LIU Shenggang. Recent development of Terahertz science and technology[J]. China Basic Science, 2006,8(1):7-12.)

[3] 王波,张岩. 太赫兹超材料和超表面器件的研发与应用[J]. 太赫兹科学与电子信息学报, 2015,13(1):1-12. (WANG Bo, ZHANG Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(1):1-12.)

[4] 詹洪磊,王玉霞,王雪松,等. 煤炭标准物质的太赫兹光谱聚类分析[J]. 太赫兹科学与电子信息学报, 2016,14(1):26-30. (ZHAN Honglei,WANG Yuxia,WANG Xuesong,et al. Cluster analysis concerning the terahertz spectroscopy of coal materials[J]. Journal of Terahertz Science and Electronic Information Technology, 2016,14(1):26-30.)

[5] 熊兆贤,黄金保,薛昊,等. 太赫兹时域光谱系统检测MCT陶瓷太赫兹性能[J]. 太赫兹科学与电子信息学报, 2014,12 (5):663-666. (XIONG Zhaoxian,HUANG Jinbao,XUE Hao,et al. Terahertz time-domain spectroscopy for MCT ceramics[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(5):663-666.)

[6] 王玉文,董志伟,李瀚宇,等. 太赫兹脉冲大气传输衰减特性[J]. 太赫兹科学与电子信息学报, 2015,13(2):208-214. (WANG Yuwen,DONG Zhiwei,LI Hanyu,et al. Atmospheric attenuation characteristics of terahertz pulse propagation[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(2):208-214.)

[7] 梁美彦,邓朝,张存林. 太赫兹雷达成像技术[J]. 太赫兹科学与电子信息学报, 2013,11(2):189-198. (LIANG Meiyan, DENG Chao,ZHANG Cunlin. THz radar imaging technology[J]. Journal of Terahertz Science and Electronic Information Technology, 2013,11(2):189-198.)

[8] 张健,邓贤进,王成,等. 太赫兹高速无线通信:体质、技术与验证系统[J]. 太赫兹科学与电子信息学报, 2014,12(1):1-13. (ZHANG Jian,DENG Xianjin,WANGCheng,et al. Terahertz high speed wireless communications:systems, techniques and demonstrations[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(1):1-13.)

[9] 闵碧波,曾嫦娥,印欣,等. 太赫兹技术在军事和航天领域的应用[J]. 太赫兹科学与电子信息学报, 2014,12(3):351-354. (MIN Bibo,ZENG Change,YIN Xin,et al. Application of terahertz techniques in military and space[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(3):351-354.)

[10] LU Q,RAZEGHJ M. Recent advances in room temperature,high-power terahertz quantum cascade laser sources based on difference-frequency generation[J]. Applied Physics Letters, 2016,101(25):97-105.

[11] RAO Z,WANG X,LU Y. Tunable terahertz generation from one CO2, laser in a GaSe crystal[J]. Optics Communications, 2011,284(23):5472-5474.

[12] MURRAY R T,RUNCORN T H,KELLEHER E J,et al. Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers[J]. Optics Letters, 2016,41(11):2446-2449.

[13] 赵刚,彭续金,杨闯,等. CO2激光差频产生太赫兹波的理论计算及分析[J]. 太赫兹科学与电子信息学报, 2016,14(2): 163-166. (ZHAO Gang,PENG Xujin,YANG Chuang,et al. Computation and analysis of terahertz wave difference frequency based on CO2 laser[J]. Journal of Terahertz Science and Electronic Information Technology, 2016,14(2):163-166.)

[14] 钟凯,姚建铨,徐德刚,等. 级联差频产生太赫兹辐射的理论研究[J]. 物理学报, 2011,60(3):034210-1-034210-8. (ZHONG Kai,YAO Jianquan,XU Degang,et al. Theoretical research on cascaded difference frequency generation of terahertz radiation[J]. Acta Physica Sinica, 2011,60(3):034210-1-034210-8.)

[15] 姚建铨. 非线性光学频率变换及准相位匹配技术[J]. 人工晶体学报, 2002,31(3):201-207. (YAO Jianquan. Development of nonlinear optical frequency conversion and quasi phase matching technology[J]. Journal of Synthetic Crystals, 2002, 31(3):201-207.)

[16] ARMSTRONG J A,BLOEMBERGEN N,DUCING J,et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962,127(6):1918-1939.

[17] SCHAAR J E,VODOPYANOV K L,KUO P S,et al. Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(2):354-362.

[18] RAVI K,HEMMER M,CIRMI G,et al. Cascaded parametric amplification for highly efficient terahertz generation[J]. Optics Letters, 2016,41(16):3806.

[19] LI Z,ZHONG K,BING P,et al. Investigation on Terahertz generation by GaP ridge waveguide based on cascaded difference frequency generation[J]. Journal of the Optical Society of Korea, 2016,20(1):169-173.

[20] CRONIN-GOLOMB M. Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production[J]. Optics Letters, 2004,29(17):2046-2048.

[21] 季家镕,冯莹. 高等光学教程[M]. 北京:科学出版社, 2008. (JI J R,FENG Y. Advanced optics textbook[M]. Beijing: Science Press, 2008.)

[22] 钱士雄,王恭明. 非线性光学[M]. 上海:复旦大学出版社, 2001. (QIAN S X,WANG G M. Nonlinear optics[M]. Shanghai: Fudan University Press, 2001.)

[23] AGGARWAL R L,LAX B. Optical mixing of CO2, lasers in the far-infrared[J]. Topics in Applied Physics, 1977(16):19-80.

[24] 李雪,延凤平,谭思宇. 基于PPLN晶体的可调谐太赫兹波辐射特性研究[J]. 光电子·激光, 2013,24(12):2265-2269. (LI Xue,YAN Fengping,TAN Siyu. Study on the characteristics of tunable THz-wave radiation based on the PPLN crystal[J]. Journal of Optoelectronics Laser, 2013,24(12):2265-2269.)

[25] 刘欢,徐德刚,姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究[J]. 物理学报, 2008,57(9): 5662-5669. (LIU Huan,XU Degang,YAO Jianquan. Theoretical study of tunable terahertz radiation based on difference_ frequency generation in GaSe and ZnGeP2 crystals[J]. Acta Physica Sinica, 2008,57(9):5662-5669.)

[26] BASS M. Handbook of optics[M]. NewYork,US:McGraw-Hill, 1995.

[27] SKAULI T,KUO P S,VODOPYANOV K L,et al. Improved dispersion relations for GaAs and applications to nonlinear optics[J]. Journal of Applied Physics, 2003,94(10):6447-6455.

[28] JUNDT D H. Temperature-dependent Sellmeier equation for the index of refraction,n(e),in congruent lithium niobate[J]. Optics Letters, 1997,22(20):1553-1555.

[29] PALIK E D. Handbook of optical constants of solids:Gallium Phosphide(GaP)[M]. NewYork,US:Academic Press, 1998.

[30] PALIK E D. Handbook of optical constants of solids:Gallium Arsenide(GaAs)[M]. NewYork,US:Academic Press, 1998.

[31] FULOPAJ A,PALFALVI L,HOFFMANN M C,et al. Towards generation of mJ-level ultrashort THz pulses by optical rectification[J]. Optics Express, 2011,19(16):15090-7.

[32] KITAMOTO A,SHOJI I,SHORANE M,et al. Absolute scale of second-order nonlinear-optical coefficients[J]. Journal of the Optical Society of America B, 1997,14(9):2268-2294.

[33] SKAULI T,VODOPYANOV K L,PINGUET T J,et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Optics Letters, 2002,27(8):628-630.

[34] HEBLING J,KUHL J,PETER A,et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO/sub 3/in the THz range[C]//Conference on Lasers and Electro-Optics. Vienna,Austria:IEEE, 2004:3.

黄俊滔, 饶志明, 谢芳森. GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射[J]. 太赫兹科学与电子信息学报, 2018, 16(4): 576. HUANG Juntao, RAO Zhiming, XIE Fangsen. Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals[J]. Journal of terahertz science and electronic information technology, 2018, 16(4): 576.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!