太赫兹科学与电子信息学报, 2018, 16 (4): 576, 网络出版: 2018-09-12   

GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射

Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals
作者单位
江西师范大学 物理与通信电子学院, 江西 南昌 330022
摘要
研究周期极化磷化镓晶体(GaP)、砷化镓晶体(GaAs)和周期极化铌酸锂晶体(PPLN)准相位匹配级联差频产生太赫兹辐射, 相较于差频过程, 级联过程太赫兹辐射输出功率增大9.5倍。通过分析三波耦合方程, 计算并比较晶体的波矢失配量、极化周期和太赫兹功率, 结果显示, 基于GaP晶体产生的太赫兹功率略大于GaAs晶体输出的功率;GaAs晶体的极化周期最小;PPLN晶体的波矢失配量和极化周期取值范围最小, 而输出的太赫兹功率和转换效率最高。建立基于周期极化掺氧化镁铌酸锂晶体(MgO:PPLN)准相位匹配原理的宽调谐激光系统, 分析吸收因子对输出太赫兹功率的影响, 计算级联差频峰值功率和转换效率。十五阶峰值功率3.72 MW, 泵浦光总能量到太赫兹辐射能量的转换效率是3.72%。
Abstract
Terahertz(THz) generation by periodically poled Gallium Phosphide(GaP) crystal, periodically poled Gallium Arsenide(GaAs) crystal, and Periodically Poled Lithium Niobate(PPLN) crystal based on Quasi-Phase-Matched(QPM) cascaded Difference-Frequency Generation(DFG) is studied. Compared to DFG, THz power in cascading processes increase by 9.5 times, the cascading process contributes to efficient THz generation. The wave vector mismatch, polarization period and terahertz power of three crystals are calculated from the coupled wave equations, and the results are compared. The results show that terahertz power generated by GaP crystal is slightly higher than that generated by GaAs crystal. The polarization period of GaAs crystal is the smallest; so are the wave vector mismatch and polarization period range of PPLN crystal, however, its conversion efficiency is the highest. A widely tunable laser source system based on the general theory of QPM in MgO:PPLN crystal has been developed. Through analyzing the absorption factor on its output of the terahertz power in theory, the conversion efficiency of cascaded DFG is obtained. The infrared radiation is produced from cascading orders 15 with a maximum power of 3.72 MW. A maximum output conversion efficiency of 3.72% is generated. The research shows significance in experiments on cascaded DFG for terahertz radiation using periodically polarized GaP, periodically polarized GaAs and PPLN crystals.
参考文献

[1] 姚建铨. 太赫兹技术及其应用[J]. 重庆邮电大学学报(自然科学版), 2010,22(6):703-707. (YAO Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University Posts and Telecommunications(Natural Science Edition), 2010,22(6):703-707.)

[2] 刘盛纲. 太赫兹科学技术的新发展[J]. 中国基础科学, 2006,8(1):7-12. (LIU Shenggang. Recent development of Terahertz science and technology[J]. China Basic Science, 2006,8(1):7-12.)

[3] 王波,张岩. 太赫兹超材料和超表面器件的研发与应用[J]. 太赫兹科学与电子信息学报, 2015,13(1):1-12. (WANG Bo, ZHANG Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(1):1-12.)

[4] 詹洪磊,王玉霞,王雪松,等. 煤炭标准物质的太赫兹光谱聚类分析[J]. 太赫兹科学与电子信息学报, 2016,14(1):26-30. (ZHAN Honglei,WANG Yuxia,WANG Xuesong,et al. Cluster analysis concerning the terahertz spectroscopy of coal materials[J]. Journal of Terahertz Science and Electronic Information Technology, 2016,14(1):26-30.)

[5] 熊兆贤,黄金保,薛昊,等. 太赫兹时域光谱系统检测MCT陶瓷太赫兹性能[J]. 太赫兹科学与电子信息学报, 2014,12 (5):663-666. (XIONG Zhaoxian,HUANG Jinbao,XUE Hao,et al. Terahertz time-domain spectroscopy for MCT ceramics[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(5):663-666.)

[6] 王玉文,董志伟,李瀚宇,等. 太赫兹脉冲大气传输衰减特性[J]. 太赫兹科学与电子信息学报, 2015,13(2):208-214. (WANG Yuwen,DONG Zhiwei,LI Hanyu,et al. Atmospheric attenuation characteristics of terahertz pulse propagation[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(2):208-214.)

[7] 梁美彦,邓朝,张存林. 太赫兹雷达成像技术[J]. 太赫兹科学与电子信息学报, 2013,11(2):189-198. (LIANG Meiyan, DENG Chao,ZHANG Cunlin. THz radar imaging technology[J]. Journal of Terahertz Science and Electronic Information Technology, 2013,11(2):189-198.)

[8] 张健,邓贤进,王成,等. 太赫兹高速无线通信:体质、技术与验证系统[J]. 太赫兹科学与电子信息学报, 2014,12(1):1-13. (ZHANG Jian,DENG Xianjin,WANGCheng,et al. Terahertz high speed wireless communications:systems, techniques and demonstrations[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(1):1-13.)

[9] 闵碧波,曾嫦娥,印欣,等. 太赫兹技术在军事和航天领域的应用[J]. 太赫兹科学与电子信息学报, 2014,12(3):351-354. (MIN Bibo,ZENG Change,YIN Xin,et al. Application of terahertz techniques in military and space[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(3):351-354.)

[10] LU Q,RAZEGHJ M. Recent advances in room temperature,high-power terahertz quantum cascade laser sources based on difference-frequency generation[J]. Applied Physics Letters, 2016,101(25):97-105.

[11] RAO Z,WANG X,LU Y. Tunable terahertz generation from one CO2, laser in a GaSe crystal[J]. Optics Communications, 2011,284(23):5472-5474.

[12] MURRAY R T,RUNCORN T H,KELLEHER E J,et al. Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers[J]. Optics Letters, 2016,41(11):2446-2449.

[13] 赵刚,彭续金,杨闯,等. CO2激光差频产生太赫兹波的理论计算及分析[J]. 太赫兹科学与电子信息学报, 2016,14(2): 163-166. (ZHAO Gang,PENG Xujin,YANG Chuang,et al. Computation and analysis of terahertz wave difference frequency based on CO2 laser[J]. Journal of Terahertz Science and Electronic Information Technology, 2016,14(2):163-166.)

[14] 钟凯,姚建铨,徐德刚,等. 级联差频产生太赫兹辐射的理论研究[J]. 物理学报, 2011,60(3):034210-1-034210-8. (ZHONG Kai,YAO Jianquan,XU Degang,et al. Theoretical research on cascaded difference frequency generation of terahertz radiation[J]. Acta Physica Sinica, 2011,60(3):034210-1-034210-8.)

[15] 姚建铨. 非线性光学频率变换及准相位匹配技术[J]. 人工晶体学报, 2002,31(3):201-207. (YAO Jianquan. Development of nonlinear optical frequency conversion and quasi phase matching technology[J]. Journal of Synthetic Crystals, 2002, 31(3):201-207.)

[16] ARMSTRONG J A,BLOEMBERGEN N,DUCING J,et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962,127(6):1918-1939.

[17] SCHAAR J E,VODOPYANOV K L,KUO P S,et al. Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(2):354-362.

[18] RAVI K,HEMMER M,CIRMI G,et al. Cascaded parametric amplification for highly efficient terahertz generation[J]. Optics Letters, 2016,41(16):3806.

[19] LI Z,ZHONG K,BING P,et al. Investigation on Terahertz generation by GaP ridge waveguide based on cascaded difference frequency generation[J]. Journal of the Optical Society of Korea, 2016,20(1):169-173.

[20] CRONIN-GOLOMB M. Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production[J]. Optics Letters, 2004,29(17):2046-2048.

[21] 季家镕,冯莹. 高等光学教程[M]. 北京:科学出版社, 2008. (JI J R,FENG Y. Advanced optics textbook[M]. Beijing: Science Press, 2008.)

[22] 钱士雄,王恭明. 非线性光学[M]. 上海:复旦大学出版社, 2001. (QIAN S X,WANG G M. Nonlinear optics[M]. Shanghai: Fudan University Press, 2001.)

[23] AGGARWAL R L,LAX B. Optical mixing of CO2, lasers in the far-infrared[J]. Topics in Applied Physics, 1977(16):19-80.

[24] 李雪,延凤平,谭思宇. 基于PPLN晶体的可调谐太赫兹波辐射特性研究[J]. 光电子·激光, 2013,24(12):2265-2269. (LI Xue,YAN Fengping,TAN Siyu. Study on the characteristics of tunable THz-wave radiation based on the PPLN crystal[J]. Journal of Optoelectronics Laser, 2013,24(12):2265-2269.)

[25] 刘欢,徐德刚,姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究[J]. 物理学报, 2008,57(9): 5662-5669. (LIU Huan,XU Degang,YAO Jianquan. Theoretical study of tunable terahertz radiation based on difference_ frequency generation in GaSe and ZnGeP2 crystals[J]. Acta Physica Sinica, 2008,57(9):5662-5669.)

[26] BASS M. Handbook of optics[M]. NewYork,US:McGraw-Hill, 1995.

[27] SKAULI T,KUO P S,VODOPYANOV K L,et al. Improved dispersion relations for GaAs and applications to nonlinear optics[J]. Journal of Applied Physics, 2003,94(10):6447-6455.

[28] JUNDT D H. Temperature-dependent Sellmeier equation for the index of refraction,n(e),in congruent lithium niobate[J]. Optics Letters, 1997,22(20):1553-1555.

[29] PALIK E D. Handbook of optical constants of solids:Gallium Phosphide(GaP)[M]. NewYork,US:Academic Press, 1998.

[30] PALIK E D. Handbook of optical constants of solids:Gallium Arsenide(GaAs)[M]. NewYork,US:Academic Press, 1998.

[31] FULOPAJ A,PALFALVI L,HOFFMANN M C,et al. Towards generation of mJ-level ultrashort THz pulses by optical rectification[J]. Optics Express, 2011,19(16):15090-7.

[32] KITAMOTO A,SHOJI I,SHORANE M,et al. Absolute scale of second-order nonlinear-optical coefficients[J]. Journal of the Optical Society of America B, 1997,14(9):2268-2294.

[33] SKAULI T,VODOPYANOV K L,PINGUET T J,et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Optics Letters, 2002,27(8):628-630.

[34] HEBLING J,KUHL J,PETER A,et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO/sub 3/in the THz range[C]//Conference on Lasers and Electro-Optics. Vienna,Austria:IEEE, 2004:3.

黄俊滔, 饶志明, 谢芳森. GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射[J]. 太赫兹科学与电子信息学报, 2018, 16(4): 576. HUANG Juntao, RAO Zhiming, XIE Fangsen. Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals[J]. Journal of terahertz science and electronic information technology, 2018, 16(4): 576.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!