光学学报, 2009, 29 (5): 1420, 网络出版: 2009-05-22   

一种新型金属铱(Ⅲ)有机配合物的光谱特性研究

Spectral Characteristics of a New Iridium(Ⅲ) Organic Complex
作者单位
1 江南大学理学院, 江苏 无锡 214122
2 江南大学化学与材料工程学院, 江苏 无锡 214122
摘要
针对一种合成的新型金属铱(Ⅲ)有机配合物的光谱特性进行了研究。实验中, 该配合物的配体为苯基喹啉和异丁基酰苯胺。紫外—可见吸收光谱研究表明, 该配合物分别在225 nm、267 nm、339 nm以及460 nm附近出现较强吸收峰, 其中在320 nm~580 nm范围内, 存在着单线态和三线态的金属铱到配体的电荷跃迁。发光光谱测试表明, 随着溶液中(二氯甲烷作为溶剂)该新型金属铱(Ⅲ)有机配合物浓度的增加, 溶液的发光光谱峰值位置不断发生红移。当处在460 nm激发波长下, 溶剂二氯甲烷发光光谱没有出现明显的峰值强度, 排除了溶剂对发光光谱测量的影响, 直接测量出该配合物在606 nm附近有强的金属三线态磷光发射。因此, 该配合物有望成为一种可用于有机电致发光领域的新型磷光材料。
Abstract
A new phosphorescent (pq)2Ir(N-phenyl-isobutyramide) complex is synthesized and its spectral characteristics are investigated. The ligands of this complex are phenyl-quinoline and N-phenyl-isobutyramide. The complex is characterized by UV-Vis absorption spectrometry and luminescence spectrometry, and the results show that strong absorption appeared at about 225 nm, 267 nm, 339 nm and 460 nm, respectively. Especially the complex shows single and triplet metal-to-ligand charge transfer from 320 nm to 580 nm. The luminescence spectra indicate that the increase in concentration of the iridium (Ⅲ) organic complex in the solution with the solvent of CH2Cl2 leads to red shift of luminescence spectra. At the excitation wavelength of 460 nm, the luminescence interference of dichloromethane is absent, so the strong metal triplet phosphorescence at around 606 nm of the Ir(Ⅲ) organic complex was generated by itself. Therefore, we conclude that the Ir(Ⅲ) organic complex can be used as a new phosphorescent material for the application in organic electroluminescence area.
参考文献

[1] 罗毅, 张贤鹏, 王霖 等. 半导体照明中的非成像学及其应用[J]. 中国激光, 2008, 35(7): 963~971

    Luo Li, Zhang Xianpeng, Wang Lin et al.. Non-imaging optics and its application in solid state lighting[J]. Chinese J. Lasers, 2008, 35(7): 963~971

[2] 张晓波, 委福祥, 刘向 等. 基于CBP:BCzVB:Btp2Ir(acac)体系的白色有机电致发光器件色度漂移研究[J]. 光学学报, 2007, 27(3): 487~493

    Zhang Xiaobo, Wei Fuxiang, Liu Xiang et al.. Color-coordinate shift in white organic electroluminescent device based on CBP:BCzVB:Btp2Ir(acac) under large driving currents[J]. Acta Optica Sinica, 2007, 27(3): 487~493

[3] 钟高余, 周素云, 陈冠雨 等. 有机发光器件的一种失效机制[J]. 中国激光, 2008, 35(1): 35~38

    Zhong Gaoyu, Zhou Suyun, Chen Guanyu et al.. An invalidation mechanism in organic light-emitting diodes[J]. Chinese J. Lasers, 2008, 35(1): 35~38

[4] Lin Gongru. Enhanced electroluminescence from nanocrystallite Si based MOSLED by interfacial Si nanopyramids[J]. Chin. Opt. Lett., 2007, 5(11): 671~673

[5] . A CO2 Laser rapid-thermal-annesling SiOx based metal-oxide-semiconductor light emitting diode[J]. Chin. Opt. Lett, 2007, 5(10): 601-602.

[6] . W. Tang, S. A. VanSlkes. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12): 913-915.

[7] . H. Burroughes. D. D. C. Bradley, A. R. Brown. Light emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.

[8] . D. Demadis C. M. Hartshorn, T. J. Meyer. The localized-to-delocalized transition in mixed valence chemistry[J]. Chem. Rev., 2001, 101(9): 2655-2686.

[9] M. Stradiotto, M. J. McGlinchey. η1-Indenyl derivatives of transition metal and main group elements: synthesis, characterization and molecular dynamics[J]. Coord. Chem. Rev., 2001, 219~221: 311~378

[10] 娄双玲, 于军胜, 黎威志 等. 基于新型空穴传输材料的有机电致发光器件的研究[J]. 光学学报, 2007, 27(8): 1455~1459

    Lou Shuangling, Yu Huajun, Li Weizhi et al.. Organic light emitting devices based on novel hole transport layer[J]. Acta Optica Sinica, 2007, 27(8): 1455~1459

[11] . R. Laskar, T. M. Chen. Tuning of wavelengths: synthesis and photophysical studies of iridium Complexes and their applications in organic light emitting devices[J]. Chem. Mater., 2004, 16(1): 111-117.

[12] . W. Hong, T. M. Chen. Effect of substituents on the photoluminescent and electroluminescent properties of substituted cyclometalated iridium (Ⅲ) complexes[J]. Mater. Chem. Phys., 2007, 101(1): 170-176.

[13] . Kawamura, S. Yanagida, S. R. Forrest et al.. Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers[J]. J Appl. Phys., 2002, 92(1): 87-93.

[14] . K. Rayabarapu, B. M. J. S. Paulose, J. P. Duan et al.. New iridium complexes with cyclometalated alkenylquinoline ligands as highly efficient saturated red light emitters for organic light emitting diodes[J]. Adv. Mater., 2005, 17(3): 349-353.

[15] G. Y. Park, Y. Ha. Red phosphorescent iridium(Ⅲ) complexes containing 2,3-diphenylquinoline derivatives for OLEDs[J]. Synth. Met., 2008, 158(3~4): 120~124

[16] . Y. Ahn, M. J. Ko, Y. Ha. The heteroleptic complexes containing 2,3-diphenylquinoline derivatives as phosphorescent materials[J]. J. Phys. Chem. Solids, 2008, 69(5): 1320-1324.

[17] . A. Baldo, D. F.O’Brien, Y. You et al.. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151-153.

[18] . Lamansky, P. Djurovich, D. Murphy et al.. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diode[J]. J. Am. Chem. Soc., 2001, 123(18): 4304-4312.

[19] . J. Hay. Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(Ⅲ) complexes using density functional theory[J]. J. Phys. Chem. A, 2002, 106(8): 1634-1641.

孙晓晨, 朱拓, 陈国庆, 丁玉强. 一种新型金属铱(Ⅲ)有机配合物的光谱特性研究[J]. 光学学报, 2009, 29(5): 1420. Sun Xiaochen, Zhu Tuo, Chen Guoqing, Ding Yuqiang. Spectral Characteristics of a New Iridium(Ⅲ) Organic Complex[J]. Acta Optica Sinica, 2009, 29(5): 1420.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!