量子光学学报, 2016, 22 (4): 341, 网络出版: 2016-12-09  

利用可控量子门在非对称多体纠缠通道中实现量子态隐形传输网络

Quantum Network Teleportation with Controllable Quantum Gates in the Channel of Asymmetric Multipartite Entangled States
作者单位
1 苏州科技大学,数理学院 物理系,江苏 苏州 215009
2 苏州大学 物理系,江苏 苏州 215006
摘要
本文通过一系列的双量子位逻辑门构造非对称多体量子纠缠态。以此态作为量子隐形传输通道,利用全局幺正操作和定域性测量,我们可以让未知态在任意一个接收端重现,从而实现量子信息一对多的网络式传输。同时,充分考虑实际量子系统的局域环境噪声对量子传输效率的影响。
Abstract
The asymmetric multipartite entangled states is realized with a series of two-qubit quantum gates in the superconducting quantum systems.The protocol of quantum network teleportation between one sender and many receivers is studied in the channel of the asymmetric entangled states.An arbitrary unknown state can be recovered at any one of the receivers by means of global unitary operations and local measurements.The effect of the noises from the local environment on the successful probability of transferring states is under consideration.
参考文献

[1] Lloyd S.A Potentially Realizable Quantum Computer[J].Science,1993,261(5128):1569-1571.DOI: http://dx.doi.org/10.1126/science.261.5128.1569.

[2] Bennett CH,Brassard G,Crepeau C,et al.Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J].Phys Rev Lett,1993,70(13):1895-1899.DOI: http://dx.doi.org/10.1103/PhysRevLett.70.1895.

[3] Kaszlikowski D,Gnacinski P,Zukowski M,et al.Violations of Local Realism by Two Entangled N-dimensional Systems are Stronger Than for Two Qubits[J].Phys Rev Lett,2000,85(21):4418-4421.DOI:http://dx.doi.org/10.1103/PhysRevLett.85.4418.

[4] Nielsen M A,Chuang I L.Quantum Computation and Quantum Information[J].Cambridge:Cambridge University Press,2000.

[5] Bouwmeester D,Pan JW,Mattle,K,et al.Experimental Quantum Teleportation[J].Nature,1997,390(6660):575-579.DOI: http://dx.doi.org/10.1038/37539.

[6] Furusawa A,Sorensen J L,Braunstein SL,et al.Unconditional Quantum Teleportation[J].Science,1998,282(5389):706-709.DOI: http://dx.doi.org/10.1126/science.282.5389.706.

[7] Cerf NJ,Bourennane M,Karlsson A,et al.Security of Quantum Key Distribution Using d-level Systems[J].Phys Rev Lett,2002,88(12):127902.DOI: http://dx.doi.org/10.1103/PhysRevLett.88.127902.

[8] Badziag P,Horodecki M,Horodecki P,et al.Local Environment can Enhance Fidelity of Quantum Teleportation[J].Phys Rev A,2000,62(1):012311.DOI:http://dx.doi.org/10.1103/PhysRevA.62.012311.

[9] Bandyopadhyay S.Origin of Noisy States Whose Teleportation Fidelity can be Enhanced Through Dissipation[J].Phys Rev A,2002,65(2):022302.DOI:http://dx.doi.org/10.1103/PhysRevA.65.022302.

[10] Yeo Ye.Local Noise can Enhance Two-qubit Teleportation[J].Phys Rev A,2008,78(2):022334.DOI:http://dx.doi.org/10.1103/PhysRevA.78.022334.

[11] Li CX,Wang CZ,Guo GC.Entanglement and Teleportation Through Thermal Equilibrium State of Spins in the XXZ model[J].Opt Commun,2006,260(2):741-748.DOI: http://dx.doi.org/10.1016/j.optcom.2005.11.017

[12] Taketani B G,de Melo F,de Matos Filho R L,deMatos Filho.Optimal Teleportation with a Noisy Source[J].Phys Rev A,2012,85(2):020301.DOI:http://dx.doi.org/10.1103/PhysRevA.85.020301.

[13] Knoll Laura T,Schmiegelow Christian T,Larotonda Miguel A.Noisy Quantum Teleportation:An Experimental Study on the Influence of Local environments[J].Phys Rev A,2014,90(4):042332.DOI:http://dx.doi.org/10.1103/PhysRevA.90.042332.

[14] Fortes Raphael,Rigolin Gustavo.Fighting Noise with Noise in Realistic Quantum Teleportation[J].Phys Rev A,2015,92(1):012338.DOI:http://dx.doi.org/10.1103/PhysRevA.92.012338.

[15] Roa Luis,Groiseau Caspar.Probabilistic Teleportation Without Loss of Information[J].Phys Rev A,2015,91(1):012344.DOI:http://dx.doi.org/10.1103/PhysRevA.91.012344.

[16] Lin Shih-Yuin,Chou Chung-Hsien,Hu B L.Quantum Teleportation between Moving Detectors[J].Phys Rev D,2015,91(8):084063.DOI:http://dx.doi.org/10.1103/PhysRevD.91.084063.

[17] Weiss U.Quantum Dissipative Systems.Singapore:World Scientific,1999.

[18] Gardiner C W,Zoller P.Quantum Noise[J].Berlin:Springer-Verlag,1999.

[19] Hillery M,Buzek V,Berthiaume A.Quantum Secret Sharing[J].Phys Rev A,1999,59(3):1829-1834.DOI:http://dx.doi.org/10.1103/PhysRevA.59.1829.

[20] Dur W,Vidal G,Cirac J I.Three Qubits can be Entangled in Two Inequivalent Ways[J].Phys Rev A,2000,62(6):062314.DOI:http://dx.doi.org/10.1103/PhysRevA.62.062314.

[21] Roos CF,Riebe M,Haffner H,et al.Control and Measurement of Three-qubit Entangled States[J].Science,2004,304(5676):1478-1480.DOI: http://dx.doi.org/10.1126/science.1097522.

[22] Zheng Shi-Biao.Splitting Quantum Information via W States[J].Phys Rev A,74(5):054303.DOI:http://dx.doi.org/10.1103/PhysRevA.74.054303.

[23] Yang Chui-Ping,Su Qi-Ping,Han Siyuan.Generation of Greenberger-Horne-Zeilinger Entangled States of Photons in Multiple Cavities via a Superconducting Qutrit or an Atom Through Resonant Interaction[J].Phys Rev A,2012,86(2):022329.DOI:http://dx.doi.org/10.1103/PhysRevA.86.022329.

[24] Zheng Anshou,Liu Jibing.Generation of an N-qubit Greenberger-Horne-Zeilinger State with Distant Atoms in Bimodal Cavities[J].J Phys B:At Mol Opt Phys,2011,44(16): 165501.DOI: http://dx.doi.org/10.1088/0953-4075/44/16/165501.

[25] Gao Yanxiang,Zhou Hui,Zou Dong,et al.Preparation of Greenberger-Horne-Zeilinger and W States on a One-dimensional Lsing Chain by Global Control[J].Phys Rev A,2013,87(3):032335.DOI:http://dx.doi.org/10.1103/PhysRevA.87.032335.

[26] Liu Siping,Yu Rong,Li Jiahua,et al.Generation of a Multi-qubit W Entangled State Through Spatially Separated Semiconductor Quantum-dot-molecules in Cavity-quantum Electrodynamics Arrays[J].J Appl Phys,2014,115(13):134312.DOI: http://dx.doi.org/10.1063/1.4870450.

[27] Greenberger D M,Horne M A,Shimony A,et al.Bell Theorem Without Inequalities[J].Am J Phys,1990,58(12):1131-1143.DOI: http://dx.doi.org/10.1119/1.16243.

[28] Peng XH,Zhu XW,Suter D,et al.Quantification of Complementarity in Multiqubit Systems[J].Phys Rev A,2005,72(5):052109.DOI:http://dx.doi.org/10.1103/PhysRevA.72.052109.

[29] Loss D,DiVincenzo D P.Quantum Computation with Quantum Dots[J].Phys Rev A,1998,57(1):120-126.DOI:http://dx.doi.org/10.1103/PhysRevA.57.120.

[30] Li Y,Shi T,Chen B,et al.Quantum-state Transmission via a Spin Ladder as a Robust Data Bus[J].Phys Rev A,2005,71(2):022301.DOI:http://dx.doi.org/10.1103/PhysRevA.71.022301.

[31] Salathe Y,Mondal M,Oppliger M,et al.Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics[J].Phys Rev X,2015,5(2):021027.DOI:http://dx.doi.org/10.1103/PhysRevX.5.021027.

[32] Kiravittaya Suwit,Rastelli Armando,Schmidt Oliver G.Advanced Quantum Dot Configurations[J].Rep Prog Phys,2009,72(4):046502.DOI: http://dx.doi.org/10.1088/0034-4885/72/4/046502.

[33] Leggett A J,Chakravarty S,Dorsey A T,et al.Dynamics of the Dissipative 2-State System[J].Rev Mod Phys,1987,59(1):1-85.DOI:http://dx.doi.org/10.1103/RevModPhys.59.1.

[34] Chin A W.Failure of the Displaced-squeezed State for Spin-boson Models in the Thermodynamic Limit[J].Phys Rev B,2007,76(20):201307(R).DOI:http://dx.doi.org/10.1103/PhysRevB.76.201307.

[35] Bulla R,Tong N H,Vojta M.Numerical Renormalization Group for Bosonic Systems and Application to the Sub-ohmic Spin-boson Model[J].Phys Rev Lett,2003,91(17):170601.DOI:http://dx.doi.org/10.1103/PhysRevLett.91.170601.

[36] Hao Xiang,Wang Xiaoqun,Liu Chen,et al.Finite-temperature Decoherence of Spin States in a {Cu-3} Single Molecular Magnet[J].Phys B:At Mol Opt Phys,2013,46(2):025502.DOI:http://dx.doi.org/10.1088/0953-4075/46/2/025502.

[37] K Kraus,States.Effects and Operations:Fundamental Notions of Quantum Theory[J].Berlin:Springer-Verlag,1983.

郝翔, 戴玥, 赵碧轩, 朱士群. 利用可控量子门在非对称多体纠缠通道中实现量子态隐形传输网络[J]. 量子光学学报, 2016, 22(4): 341. HAO Xian, DAI Yue, ZHAO Bi-xuan, ZHU Shi-qun. Quantum Network Teleportation with Controllable Quantum Gates in the Channel of Asymmetric Multipartite Entangled States[J]. Acta Sinica Quantum Optica, 2016, 22(4): 341.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!