人工晶体学报, 2020, 49 (7): 1272, 网络出版: 2020-08-18  

艾奇逊炉提纯碳纳米管的组织结构性能表征

Characterization of Structure and Properties of CNT Purified by Acheson Furnace
作者单位
1 共青科技职业学院,九江 332020
2 江西晶纳新材料有限公司,南昌 330052
3 南昌大学,南昌 330000
摘要
碳纳米管作为锂离子电池正极导电剂已经在中国得到了普遍应用,作为电池导电剂的碳纳米管需要提纯处理。本文研究了利用艾奇逊炉对化学气相沉积的碳纳米管在3 000 ℃进行提纯处理后的组织结构和电学性能,利用扫描电子显微镜(SEM),电子能谱仪(EDS), 等离子体发射光谱仪(ICP), 红外光谱仪(FT-IR), 热重分析仪(TGA),X射线光电子谱仪(XPS), 拉曼光谱分析仪,四探针薄膜电阻仪对艾奇逊炉提纯的碳纳米管进行了检测。结果表明高温提纯的碳纳米管的含铁量可降低到71ppm,氧化物含量低于0.45wt%,晶格缺陷大幅减少,石墨组织结构完整,表面官能团少,具有体积电阻率0.050~0.035 Ω·cm,作为电池电极的导电材料,可以用于动力电池正极。
Abstract
Carbon nanotubes (CNT), as a conducting material, have been widely used in the Chinese battery industry. CNT need to be purified for use in battery as conducting agent. Here, CNTs prepared by chemical vapor deposition(CVD) were purified at 3 000 ℃ using Acheson furnace and the structure and electrical behavior of the CNT were investigated. The CNT were characterized in detail with SEM, EDS, ICP, FT-IR, TGA, XPS, Raman and Four point resistor. The results show that the CNT purified at high temperature only have less than 71ppm (weight percent) iron content, and 0.45wt% oxides content. Besides, the CNT also have a better graphite crystal structure and fewer surface function group. The volume resistivity of the CNT ranges from 0.050 Ω·cm to 0.035 Ω·cm. As a conductive material of battery electrode, it can be used as positive electrode of power battery.
参考文献

[1] Iijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354(7): 56-58.

[2] Treacy M M J, Ebbesen T W, Gibsen J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes[J]. Nature,1996,38(20): 696-680.

[3] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J].Nature,1996,382(4): 54-56.

[4] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys.Rev.Lett.,2001,87: 215502.

[5] Shaffer M S P, Windle A H. Analogies between polymer Solutions and carbon nanotube dispersions[J].Macromole.Cules.,1999,32(20): 6864-6866.

[6] 张娟玲,崔 蚰.碳纳米管/聚合物复合材料[J].化学进展,2006,18(10): 313-321.

[7] 张庆堂,瞿美臻,于作龙.锂离子电池导电剂研究进展[J].化学通报,2006,69: 081.

[8] 陈改荣,郭晓伟,王 辉,等.碳纳米管导电剂对锂离子电池电极材料的改性研究[J].功能材料信息高层论坛,2013,10(5-6): 21-25.

[9] XPS_Database[DB/OL]. http//baidu.com/view/

[10] 王富耻.材料现代分析测试技术方法[M].北京: 北京理工大学出版社,2006.1,第一版: 217.

[11] 赵良仲.碱土金属氧化物和过氧化物的O1s电子结合能测定[J].物理化学学报,1993,2: 170-174.

[12] Porroa S, Mussoa S, Vinanteb M, et al. Purification of carbon nanotubes grown by thermal CVD[J]. Physica E, 2007(37): 58-61.

[13] Corrias M, Serp Ph, Kalcka Ph, et al. High purity multiwalled carbon nanotubes under high pressure and high temperature[J].Carbon,2003(41): 2361-2367.

[14] Bae J H, Shanmugharaj A M, Noh W H, et al. Surface chemicalfunctionalized single-walled carbon nanotube with anchored phenol structures: physical and chemical characterization[J].Appl.Surf.Sci.,2007(253): 4150-4155.

[15] Amit Mahajan, Angus Kingon, A kos Kukovecz, et al. Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres[J].Materials Letters,2013(90): 165-168.

[16] Elena V.Basiuk, Lazaro Huerta, Vladimir A.Basiuk. Noncovalent bonding of 3d metal(II) phthalocyanines with single-walled carbon nanotubes: A combined DFT and XPS study[J]. Applied Surface Science,2019,470(15): 622-630.

[17] Wang Yao, Wu Jun, Wei Fei. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio[J].Carbon, 2003(41): 2939-2948.

[18] Antunesa E F, De Resendeb V G, Menguib U A. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing[J].Applied Surface Science, 2011(257): 8038-8043.

[19] 顾鹂鋆,温 治,豆瑞锋,等.艾奇逊石墨化炉炉温分布特性的仿真研究[J].冶金能源,2012,31(5): 28-38.

[20] 刘春雷,顾伟良,提高艾奇逊石墨化炉炉龄的探讨[J].炭素技术,2014,33(2): 61-63.

[21] Colomer J F, Stephan C, Lefrant S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method[J]. Chemical Physics Letters,2000(317): 83-89.

[22] Kathyayini H, Nagaraju N, Nagy J B, et al. Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes[J]. Journal of Molecular Catalysis A: Chemical,2004(223): 129-136.

[23] 兰永平,朱毅青,李为民,等.超细镍基催化剂的制备及表征[J].石油学报,2011,27(5): 706-711.

[24] Fonseca A, Hermadi K, Nagy J B, et al. Optimization of catalytic production and purification of bucktube[J]. Journal of molecular catalysis A: Chemical,1996(107): 159-168.

[25] Liu Xiaotong, Zhang Yeshui, Nahil Mohamad A, et al. Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo chemical conversion of waste plastics[J]. Journal of Analytical and Applied Pyrolysis,2017(125): 32-39.

[26] 董若璟.冶金原理[M].北京: 机械工业出版社,1980年第一版: 103-129.

[27] 金属百科,亚洲金属网[DB/OL], http: //baike.asianmetal.cn/metal.

[28] 沈增民.新型碳材料[M].北京: 化学工业出版社,2003年7月,第一版: 53-98.

[29] Wang Y, Wei F, Luo G H, et al. Large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J]. Chem.Phys.Lett.,2002,364(5): 568-72.

[30] Huang W, Wang Y, Luo G, Wei F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003(41): 2585-2590.

[31] Kim Y A, Muramatsu H, Hayashi T, et al. Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment[J]. Chem.Phys.Lett., 2004(398): 87-92.

[32] Hou P X, Liu C, Cheng H M.Purification of carbon nanotubes[J].Carbon,2008(46): 2003-2025.

[33] 蔡 旬.人造石墨废料用作lib负极材料的高温处理工艺研究及LWG技术的应用[D].长沙: 湖南大学,2013,12: 23-24.

钟良伟, 郭纪林, 曾志鹏, 曾效舒. 艾奇逊炉提纯碳纳米管的组织结构性能表征[J]. 人工晶体学报, 2020, 49(7): 1272. ZHONG Liangwei, GUO Jilin, ZENG Zhipeng, ZENG Xiaoshu. Characterization of Structure and Properties of CNT Purified by Acheson Furnace[J]. Journal of Synthetic Crystals, 2020, 49(7): 1272.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!