中国激光, 2016, 43 (8): 0802014, 网络出版: 2016-08-10   

冲击加载下纯钛微观塑性变形的分子动力学模拟 下载: 1066次

Molecular Dynamics Simulation of Plastic Deformation of Pure Titanium Under Shock Loading
作者单位
1 空军工程大学等离子体重点实验室, 陕西 西安 710038
2 中国人民解放军94106部队, 陕西 西安 710038
摘要
激光冲击强化利用激光冲击波力学效应可提高金属材料力学性能,现有实验手段难以测量波后动态物理参量、局部动态力学量以及微观组织动态运动过程。采用分子动力学方法,在300 K初始温度下对纯钛进行冲击模拟,观察到冲击加载下冲击波在纯钛中传播的动态双波结构,得到了加载过程中的力学量动态变化以及力学作用下孪晶的动态生长过程。塑性变形过程中,由于位错的塞积和释放,正应力上升的同时剪切力和流变应力不断下降,形成平行孪晶栅。在受冲击表面观察到了极薄的非晶层,其形成与超高应变率塑性变形和动态再结晶相关,且孪晶和非晶层结构均与透射电子显微镜结果吻合较好。
Abstract
Laser shock peening utilizes the mechanical effect of shockwave to improve the mechanical properties of metal materials, however, it is very difficult to measure the dynamic physical parameters after shockwave, the local dynamic mechanical parameters, and the development of microstructure with current means of experiment. The molecular dynamics method is employed to conduct the shock simulation in pure titanium at a starting temperature of 300 K , the dynamic dual-wave structure feature of the shockwave in pure titanium under the shock loading is observed, and the change of the mechanical parameters as well as the dynamic growing process of twin phase under shock loading are obtained. During the plastic deformation, the stoppage and release of dislocation make the normal stress rise while the shear stress and von Mises stress continue to drop, and the parallel twin gratings are formed. A layer of amorphous structure is observed on the surface subject to shock loading, and its formation is related to ultrahigh strain rate plastic deformation and dynamic recrystallization behavior. Both the twin structure and the amorphous structure coincide with the results obtained by transmission electron microscopy.
参考文献

[1] Wang Y M, Bringa E M, McNaney J M, et al. Deforming nanocrystalline nickel at ultrahigh strain rates[J]. Applied Physics Letters, 2006, 88(6): 061917.

[2] 薛军,杨勇, 李晨, 等. 飞秒激光诱导自组织纳米光栅偏振散射特性研究[J]. 光学学报, 2014, 34(4): 0432001.

    Xue Jun, Yang Yong, Li Chen, et al. Research on polarized scattering of self-organized nanogratings induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432001.

[3] 田清,周建忠, 黄舒, 等. 循环载荷下激光喷丸诱导的表面残余压应力释放特性研究[J]. 激光与光电子学进展, 2014, 51(8): 081403.

    Tian Qing, ZhouJianzhong, Huang Shu, et al. Relaxation of residual stress on laser-peened surface during cyclic loading[J]. Laser & Optoelectronics Progress, 2014, 51(8): 081403.

[4] 华亮, 田威, 廖文和, 等. 激光熔覆热影响区及残余应力分布特性研究[J]. 激光与光电子学进展, 2014, 51(9): 091401.

    Hua Liang, Tian Wei, Liao Wenhe, et al. Study of thermal-mechanical coupling behavior in laser cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091401.

[5] Li Y H, Zhou L C, He W F, et al. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperature[J]. Science and Technology of Advanced Materials, 2013, 14(5): 1574-1578.

[6] 黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用[M]. 北京: 国防工业出版社, 2012: 7.

    Huang Xu, Zhu Zhishou, Wang Honghong. Advanced aeronautical titanium alloys and applications[M]. Beijing: National Defense Industry Press, 2012: 7.

[7] 聂祥樊, 何卫锋, 臧顺来, 等. 激光喷丸提高TC11钛合金高周疲劳性能的试验研究[J]. 中国激光, 2013, 40(8): 0803006.

    Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chinese J Lasers, 2013, 40(8): 0803006.

[8] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009, 36(12): 3204-3209.

    Wang Huaming, Zhang Shuquan, Wang Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese J Lasers, 2009, 36(12): 3204-3209.

[9] Amarchinta H K, Grandhi R V, Langer K, et al. Material model validation for laser shock peening process simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2008, 17(1): 015010.

[10] Ding K, Ye L. Simulation of multiple laser shock peening of a 35CD4 steel alloy[J]. Journal of Materials Processing Technology, 2006, 178(1): 162-169.

[11] Wu B, Tao S, Lei S. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments[J]. Applied Surface Science, 2010, 256(13): 4376-4382.

[12] 王志龙. 激光冲击强化工业纯钛高温拉伸性能及微观组织结构研究[D]. 镇江: 江苏大学, 2015: 45-46.

    Wang Zhilong. High-temperature tensile properties and micro-structure of CP-Ti subjected to laser shock peening[D]. Zhenjiang: Jiangsu University, 2015: 45-46.

[13] Borisenok V A, Zhernokletov M V, Kovalev A E , et al. Phase transitions in shock-loaded titanium at pressures up to 150 GPa[J]. Combustion, Explosion, and Shock Waves, 2014, 50(3): 346-353.

[14] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering: A, 2013, 578: 181-186.

[15] Ren J Q, Sun Q Y, Lin X, et al. Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: A molecular dynamics simulation[J]. Computational Materials Science, 2014, 92: 8-12.

[16] 于超, 宁建国. 钛的冲击熔化分子动力学模拟[C]. 延安: 全国计算爆炸力学会议, 2012: 26.

[17] Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper: Ab initio, tight-inging, and embedded-atom calculations[J]. Physical Review B, 2001, 63(22): 224106.

[18] 邓小良, 祝文军, 宋振飞, 等. 冲击加载下孔洞贯通的微观机理研究[J]. 物理学报, 2009, 58(7): 4772-4778.

    Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Microscopic mechanism of void coalescence under shock loading[J]. Acta Physica Sinica, 2009, 58(7): 4772-4778.

[19] 马文, 祝文军, 张亚林, 等. 纳米多晶金属样本构建的分子动力学模拟研究[J]. 物理学报, 2010, 59(7): 4781-4787.

    Ma Wen, Zhu Wenjun, Zhang Yalin, et al. Construction of metallic nanocrystalline samples by molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(7): 4781-4787.

[20] Holian B L. Modeling shock-wave deformation via molecular dynamics[J]. Physical Review A, 1988, 37(7): 2562.

[21] Kim I, Kim J, Shin D H, et al. Deformation twins in pure titanium processed by equal channel angular pressing[J]. Scripta Materialia, 2003, 48(6): 813-817.

[22] Gurao N P, Kapoor R, Suwas S. Deformation behavior of commercially pure titanium at extreme strain rates[J]. Acta Materialia, 2011, 59(9): 3431-3446.

[23] Xu F, Zhang X F, Ni H T, et al. Effect of twinning on microstructure and texture evolutions of pure Ti during dynamic plastic deformation[J]. Materials Science and Engineering A, 2013, 564: 22-33.

[24] Li D, Wang F C, Yang Z Y, et al. How to identify dislocations in molecular dynamics simulations[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(12): 2177-2187.

[25] Cui C, Hu J, Liu Y, et al. Formation of nano-rystalline and amorphous phases on the surface of stainless steel by Nd: YAG pulsed laser irradiation[J]. Applied Surface Science, 2008, 254(21): 6779-6782.

[26] 曹扬, 陈光, 颜银标. 钢铁材料表面自身纳米晶化及其应用前景[J]. 钢铁研究学报, 2005, 17(2): 1-6.

    曹扬, 陈光, 颜银标. 钢铁材料表面自身纳米晶化及其应用前景[J]. 钢铁研究学报, 2005, 17(2): 1-6.

    Cao Yang, Chen Guang, Yan Yinbiao. Current status and prospects of surface self nanocrystallization for iron and steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 1-6.

    Cao Yang, Chen Guang, Yan Yinbiao. Current status and prospects of surface self nanocrystallization for iron and steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 1-6.

陈亚洲, 周留成, 何卫锋, 罗思海, 焦阳, 庞澄清, 刘鹏. 冲击加载下纯钛微观塑性变形的分子动力学模拟[J]. 中国激光, 2016, 43(8): 0802014. Chen Yazhou, Zhou Liucheng, He Weifeng, Luo Sihai, Jiao Yang, Pang Chengqing, Liu Peng. Molecular Dynamics Simulation of Plastic Deformation of Pure Titanium Under Shock Loading[J]. Chinese Journal of Lasers, 2016, 43(8): 0802014.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!