中国激光, 2020, 47 (5): 0500014, 网络出版: 2020-05-12   

面向空间应用耐辐照有源光纤研究进展 下载: 2817次特邀综述

Radiation-Resistant Active Fibers for Space Applications
作者单位
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 国科大杭州高等研究院, 浙江 杭州 310024
图 & 表

图 1. LEO、MEO、GSO示意图[6]

Fig. 1. Schematic of LEO, MEO, and GSO[6]

下载图片 查看原文

图 2. 粒子辐照对石英基光纤性能的影响

Fig. 2. Effect of radiation on the properties of silica-based fibers

下载图片 查看原文

图 3. 有源和无源光纤的RIA谱[20]

Fig. 3. RIA spectra of active and passive fibers[20]

下载图片 查看原文

图 4. 粒子辐照与石英玻璃的相互作用。(a)粒子辐照破坏石英玻璃中Si—O—Si网络的模型;(b)铝单掺石英玻璃的RIA谱

Fig. 4. Interaction between ion radiation and silica glass. (a) Model of Si—O—Si network in silica glass destroyed by ion irradiation; (b) RIA spectrum of aluminum single-doped silica glass

下载图片 查看原文

图 5. 不同类型的粒子辐照诱导纯石英光纤产生色心的流程图

Fig. 5. Flow chart of color center formation caused by different types of ion irradiation in pure silica fiber

下载图片 查看原文

图 6. 辐射诱导色心的表征。(a) Yb3+单掺石英玻璃(Yb∶SiO2)的原位光致发光谱;(b)纯石英玻璃(SiO2)的RIA谱;(c) Yb∶SiO2玻璃的RIA谱;(d) 193 nm激光辐照100 min后SiO2和Yb∶SiO2样品的CW-EPR谱

Fig. 6. Characterization of radiation-induced color centers. (a) In situ photoluminescence spectra of Yb3+ single-doped silica glass (Yb∶SiO2); (b) RIA spectra of pure silica glass (SiO2); (c) RIA spectra of Yb∶SiO2 glass; (d) CW-EPR spectra of SiO2 and Yb∶SiO2 samples after 193 nm laser irradiation for 100 min

下载图片 查看原文

图 7. 脉冲EPR谱(HYSCORE投影)[72]

Fig. 7. Pulse EPR spectra (HYSCORE projection)[72]

下载图片 查看原文

图 8. Yb3+掺杂石英玻璃中辐致色心形成模型[49]

Fig. 8. Formation model of color centers caused by irradiation in Yb3+-doped silica glass[49]

下载图片 查看原文

图 9. 纯石英玻璃中常见点缺陷的光谱[20]。(a)吸收光谱;(b) CW-EPR谱

Fig. 9. Spectra of point defects in pure silica glass[20]. (a) Absorption spectra; (b) CW-EPR spectra

下载图片 查看原文

图 10. 铝单掺石英玻璃中常见点缺陷的光谱[20]。(a)吸收光谱;(b) CW-EPR谱

Fig. 10. Spectra of point defects in Al-doped silica glass [20]. (a) Absorption spectra; (b) CW-EPR spectra

下载图片 查看原文

图 11. 磷单掺石英玻璃中常见点缺陷的光谱[20]。(a)吸收光谱;(b) CW-EPR谱

Fig. 11. Spectra of point defects in P-doped silica glass[20]. (a) Absorption spectra; (b) CW-EPR spectra

下载图片 查看原文

图 12. 锗单掺石英玻璃中常见点缺陷的光谱[20]。(a)吸收光谱;(b) CW-EPR谱

Fig. 12. Spectra of point defects in Ge-doped silica glass[20]. (a) Absorption spectra; (b) CW-EPR spectra

下载图片 查看原文

图 13. 有源光纤耐辐射特性的三大主要影响因素

Fig. 13. Three main factors influencing radiation resistance of active optical fiber

下载图片 查看原文

图 14. Er3+掺杂双包层光纤和Er3+掺杂光子晶体光纤在波长1550 nm处的RIA强度随辐射剂量的变化[55]

Fig. 14. Variation of RIA intensity with radiation dose at 1550 nm in Er3+-doped double clad fiber and Er3+-doped photonic crystal fiber[55]

下载图片 查看原文

图 15. 光纤中元素对双包层光纤RIA谱的影响。(a)杂质元素(OH和Cl)[92];(b)掺杂元素(Ge、P、Er/Al)[93]

Fig. 15. Effects of elements in fiber on RIA spectra of double clad fibers. (a) Impurity elements (OH and Cl) [92]; (b) doped elements (Ge, P, Er/Al) [93]

下载图片 查看原文

图 16. 辐射粒子种类对光纤RIA谱的影响。(a)伽马和质子辐射对Er3+/Al3+共掺光纤RIA谱的影响[93];(b)稳态伽马射线和瞬态X射线对无源光纤RIA谱的影响[102]

Fig. 16. Effects of radiation particles on RIA spectra of fiber. (a) Effects of gamma and proton radiation on RIA spectra of Er3+/Al3+ co-doped fiber[93]; (b) effects of steady gamma rays and transient X-rays on RIA spectra of passive fiber[102]

下载图片 查看原文

图 17. 总剂量、剂量率及温度对石英光纤RIA谱的影响。(a)总剂量和剂量率对氟单掺石英光纤RIA谱的影响[104];(b)温度对磷单掺石英光纤RIA谱的影响[105]

Fig. 17. Effects of total dose, dose rate, and temperature on RIA spectra of silica fiber. (a) Effects of total dose and dose rate on RIA spectra of fluorine-doped silica fiber[104]; (b) effects of temperature on RIA spectra of phosphorus-doped silica fiber[105]

下载图片 查看原文

图 18. 泵浦光功率对Er3+/Al3+共掺光纤RIA谱的影响[107]

Fig. 18. Effect of pump power on RIA spectra of Er3+/Al3+-doped fiber[107]

下载图片 查看原文

图 19. 提高有源光纤耐辐射性能的方法

Fig. 19. Methods to improve radiation resistance of active fiber

下载图片 查看原文

图 20. 纤芯成分对光纤RIA谱的影响[29]

Fig. 20. Effect of core composition on the RIA spectra of optical fiber[29]

下载图片 查看原文

图 21. Ce含量变化对P/Er/Yb/Ce掺杂石英光纤性能的影响[113]。(a)发射谱;(b)激光斜率效率;(c)在线辐射下的增益;(d)离线辐射下的增益

Fig. 21. Effect of Ce content on the properties of P/Er/Yb/Ce-doped silica fiber[113]. (a) Emission spectra; (b) laser slope efficiency; (c) gain performance under on-line radiation; (d) gain performance under off-line radiation

下载图片 查看原文

图 22. 4种辐照源对石英光纤中Er3+离子4I13/2能级荧光寿命的影响[115]。(a) P/Er/Yb共掺石英光纤;(b) P/Er/Yb/Ce共掺石英光纤

Fig. 22. Effect of four irradiation sources on the 4I13/2 lifetime of Er3+ ions in silica fibers[115]. (a) P/Er/Yb co-doped silica fiber; (b) P/Er/Yb/Ce co-doped silica fiber

下载图片 查看原文

图 23. P单掺和P/Ce共掺石英光纤的RIA谱[116]

Fig. 23. RIA spectra of P- and P/Ce-doped silica fiber[116]

下载图片 查看原文

图 24. HACC光纤的结构与性能。(a) HACC光纤结构示意图[120];(b) RIA谱[120];(c)增益下降与辐照剂量的关系[121]

Fig. 24. Structure and performance of HACC fiber. (a) Structure diagram of HACC fiber[120]; (b) RIA spectra[120]; (c) relationship between gain decrease and radiation dose[121]

下载图片 查看原文

图 25. 有源光纤预制棒的预处理及其光纤性能评估流程图[48]

Fig. 25. Flow chart of pretreatment of active fiber preform and its fiber performance evaluation[48]

下载图片 查看原文

图 26. 预制棒所拉制光纤的损耗谱和激光斜率效率曲线[48]。(a)(d)原始预制棒;(b)(e)载H2预处理预制棒; (c)(f)载D2预处理预制棒

Fig. 26. Loss spectra and laser slope efficiency curves of optical fibers drawn by preforms [48]. (a)(c) Pristine preform; (b)(e) loading H2 pretreated preform; (c)(f) loading D2 pretreated preform

下载图片 查看原文

图 27. OH和OD基团的主要振动吸收峰。(a) 500~4000 nm波段;(b) 800~2000 nm波段

Fig. 27. Main vibration absorption peaks of OH and OD groups. (a) 500-4000 nm; (b) 800-2000 nm

下载图片 查看原文

图 28. 漂白处理对不同剂量γ射线辐照后掺Tm3+石英光纤损耗谱和激光斜率效率的影响。(a)(b)光漂白[36];(c)(d)气氛漂白[38]

Fig. 28. Effect of bleaching on the loss spectra and laser slope efficiency of Tm3+-doped fiber irradiated by different doses of γ-ray. (a)(b) Photobleaching[36]; (c)(d) atmosphere bleaching[38]

下载图片 查看原文

图 29. 通过系统优化提高光纤激光器或放大器抗辐照特性的总体思路

Fig. 29. General idea of improving radiation hardness feature of fiber laser or amplifier through system optimization strategy

下载图片 查看原文

图 30. 系统优化提高耐辐照特性[137]。(a)~(c)模拟载氢与否、光纤长度、泵浦方式对EDFA抗辐照性能的影响;(d)实验对比元件优化和系统优化对载氢EDFA抗辐照性能的影响

Fig. 30. Radiation resistance improved by system strategy[137]. (a)-(c) Influence of hydrogen loading, fiber length, and pumping mode on the radiation resistance of EDFA through software simulation; (d) influence of component strategy and system strategy on the radiation resistance of EDFA through experimental method

下载图片 查看原文

表 1太空中卫星所在的三个轨道对应的高度、辐射环境及用途[6-7]

Table1. Altitudes, radiation environments, and uses of the three orbits of satellites in space[6-7]

OrbitalnameAltitude/kmDose rate /(rad·min-1)Radiationdose /kradRadiation zoneOrbital use
LEO<2000<0.0275-10South Atlantic anomalyEarth observation satellite
MEO2000-36000<0.27210-100Van Allen beltsNavigation system satellite
GSO36000~0.135~50Galactic cosmic raysCommunication satellite

查看原文

表 25种不同类型光纤的特征参数及其在太空中的应用和挑战

Table2. Characteristic parameters of five different types of optical fibers and their applications and challenges in space

Fiber typeCore/claddingsize /μmCore NAApplicationChallengeReference
Sensing/communicationsingle mode optical fiber<10/125<0.17Temperature,humidity, pressure sensing,data transmissionLoss increase,Bragg wavelength shift,reflectivity decrease[8-11]
Sensing/communicationmultimode optical fiber50~62.5/1250.18-0.23Temperature,humidity,pressure sensingdata transmissionLoss increase,Bragg wavelength shift,reflectivity decrease[8-11]
Polarizationmaintaining fiber<10/1250.12-0.22Fiber optic gyroscopeLoss increase[12]
Microstructure fiber<20/125<0.06Large-mode-area,infinite cut-off single mode,super radiation resistanceLoss increase[13-14]
Active optical fiber(Yb/Er/Tm, etc.)<10/125<25/4000.06-0.22Fiber optic gyroscope, laser communication,laser radar,laser remote sensing,laser weapon,space waste disposal,etc.Loss increase,gain decrease,efficiency decrease,noise figure increase[15-16]

查看原文

表 3石英玻璃中常见点缺陷的结构模型、光谱和CW-EPR谱特征值

Table3. Structural models, characteristic values in optical and CW-EPR spectra of common point defects in silica glass

DefectStructuralmodelOptical spectraCW-EPR spectraReference
Absorptionpeak /eVAbsorptionFWHM /eVPLpeak /eVLande factor(g1, g2, g3)Hyperfine couplingconstant (A1, A2,A3) /G
ODC (I)≡Si—Si≡7.60.52.7/4.4NoneNone[81-83]
Si-E'≡Si·5.80.8None(2.0018, 2.0006, 2.0003)Not observed[63-64, 83]
ODC (II)≡Si··Si≡4.95-5.050.32.7 /4.4NoneNone[81-83]
NBOHC≡Si—O∘4.8/2.01.05/0.181.85-1.95(1.9999,2.0095,2.078)Not observed[63-64,83]
POR≡Si—O—O·4.8/1.970.8/0.175None(2.0018,2.0078,2.067)Not observed[63-64,83]
POL≡Si—O—O—Si≡3.8Not reportedNoneNoneNone[63,83]
Cl2Cl—Cl3.80.7NoneNoneNone[83]
STH≡Si—O∘—Si≡2.6/2.161.5/1.2None(2.0054,2.0078,2.0125)Not observed[63-65,83]
O2O=O1.62/0.970.012/0.0110.97NoneNone[83]
Al-ODC≡Al··Si≡4.960.472.6/3.4NoneNone[49]
Al-E'≡Al·4.11.02None2.002350[49,84-85]
Al-OHC≡Al—O∘3.2/2.31.0/0.9None(2.0402,2.017,2.0039)(4.7,10.3,12.7)[49,85-86]
P4—P·—4.80.41None(2.0014,1.9989,1.9989)300[67]
P2=P·=4.51.27None(2.002,1.999,1.999)800-1600[67]
l-POHC≡P—O∘3.10.73None(2.0039,2.0027,2.0026)(50,41,48)[67]
r-POHC=P—O∘22.2,2.50.35,0.63None(2.0179,2.0097,2.0075)(54,52,48)[67]
P1≡P·0.790.29None(2.002,1.999,1.999)910[67]
GLPC=Ge∶5.150.424.3NoneNone[25,87]
Ge(1)=Ge·=4.41.2None(2.0006,2.0000,1.9930)Not observed[25,88]
Ge-E'≡Ge·6.20.7None(2.0012,1.9951,1.9941)Not observed[87-88]
Ge(2)≡Ge·—Ge≡5.80.7None(2.0010,1.9989,1.9867)Not observed[87-88]
Ge-OHC≡Ge—O∘2.111.85Not reportedNot reported[25]
Ge-STHNot clear0.540.5NoneNot reportedNot reported[25]

查看原文

表 4原始、载氢预处理、载氘预处理预制棒制备的掺镱石英光纤辐照前后的激光斜率效率和波长1200 nm处的背景损耗值

Table4. Laser slope efficiency and background loss at 1200 nm of ytterbium doped silica fibers drawn by pristine, loading H2, and loading D2 pretreated preforms

Optical fiberparameterLoss@1200 nm /(dB·km-1)Slope efficiency /%Decrease in efficiency by pretreatment /%
0 Gy700 Gy0 Gy700 Gy0 Gy700 Gy
Pristine~6~5337900100
H2 pretreated~83~13045324329
D2 pretreated~20~707559521

查看原文

邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47(5): 0500014. Chongyun Shao, Chunlei Yu, Lili Hu. Radiation-Resistant Active Fibers for Space Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500014.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!