光学学报, 2015, 35 (10): 1033001, 网络出版: 2015-10-08   

双眼高阶像差校正与视觉分析系统

Binocular Higher-Order Aberration Correction and Vision Analysis System
康健 1,2,3,*戴云 1,2梁波 1,2,3赵豪欣 1,2官春林 1,2汤国茂 1,2张雨东 1,2
作者单位
1 中国科学院光电技术研究所, 四川 成都 610209
2 中国科学院自适应光学重点实验室, 四川 成都 610209
3 中国科学院大学, 北京 100049
摘要
人眼像差对视功能具有重要影响。目前相关研究结果多在单眼条件下获得,为解决双眼像差对双眼视功能的影响等问题,搭建了一套双眼高阶像差校正与视觉分析系统。该系统采用哈特曼波前传感器和37单元变形反射镜对双眼像差进行测量和控制,并通过对控制器增益的优化设计,实现了对双眼像差的稳定闭环控制。视标显示器采用有机发光二极管微型显示器,其视频输入信号直接由计算机产生,可方便地实现多种视功能测试。利用该系统进行了初步的立体视觉实验,展示了该系统在双眼视功能测试方面的巨大潜力。双眼高阶像差校正与视觉分析系统的建立为未来双眼视功能的深入研究提供了必要的技术和设备支持。
Abstract
Human aberration plays an important role in visual function. So far, relevant research findings are obtained mainly under monocular viewing conditions. To investigate the effects of binocular aberrations on binocular visual functions, a binocular higher-order aberration correction and vision analysis system is established. The proposed system employs Hartmann wavefront sensors and 37-element deformable mirrors to measure and control binocular aberrations. Through the optimization of the controller gain, it realizes stable closed-loop control of binocular aberrations. The organic light-emitting diodes are used as stimulus display. The input signals are generated directly by computers, making it convenient to implement various visual function tests. Employing the proposed system, a preliminary stereo vision experiment is carried out, its vast potential in binocular visual function testing is demonstrated. The binocular higher-order aberration correction and vision analysis system provides essential technology and equipment support for further binocular visual function research in the future.
参考文献

[1] J Liang, B Grimm, S Goelz, et al.. Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wavefront sensor[J]. J Opt Soc Am A, 1994, 11(7): 1949-1957.

[2] J Liang, D R Williams, D T Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J Opt Soc Am A, 1997, 14(11): 2884-2892.

[3] A Roorda. Adaptive optics for studying visual function: A comprehensive review[J]. Journal of Vision, 2011, 11(5): 1-21.

[4] E J Fernández, P M Prieto, P Artal. Binocular adaptive optics visual simulator[J]. Opt Lett, 2009, 34(17): 2628-2630.

[5] R Sabesan, L Zheleznyak, G Yoon. Binocular visual performance and summation after correcting higher order aberrations[J]. Biomedical Opt Express, 2012, 3(12): 3176-3189.

[6] 翟奕, 王肇圻, 王雁, 等. 用特殊眼模型研究人眼像差与色差对视觉的影响[J]. 光学学报, 2014, 34(11): 1133001.

    Zhai Yi, Wang Zhaoqi, Wang Yan, et al.. Impact of chromatic and higher-order aberrations of human eyes on vision based on special eye models[J]. Acta Optica Sinica, 2014, 34(11): 1133001.

[7] 王波,钮赛赛,吴卫明. 人眼像差校正线性二次高斯优化控制研究[J]. 激光与光电子学进展, 2014, 51(4): 041102.

    Wang Bo, Niu Saisai, Wu Weiming. Linear quadratic Gaussian optimal control for human eye aberration correction[J]. Laser & Optoelectronics Progress, 2014, 51(4): 041102.

[8] 郑贤良, 刘瑞雪, 夏明亮, 等. 高频采样下人眼波像差特性研究[J]. 光学学报, 2014, 34(7): 0733001.

    Zheng Xianliang, Liu Ruixue, Xia Mingliang, et al.. Temporal properties study of ocular wave aberrations with high frequency sampling [J]. Acta Optica Sinica, 2014, 34(7): 0733001.

[9] 薛丽霞, 饶学军, 王成, 等. 人眼高阶像差校正和视觉分析系统[J]. 光学学报, 2007, 27(5): 893-897.

    Xue Lixia, Rao Xuejun, Wang Cheng, et al.. Higher-order aberrations correction and vision analysis system for human eye[J]. Acta Optica Sinica, 2007, 27(5): 893-897.

[10] S Li, Y Xiong, J Li, et al.. Effects of monochromatic aberration on visual acuity using adaptive optics[J]. Optom Vis Sci, 2009, 86(7): 868-874.

[11] J Li, Y Xiong, N Wang, et al.. Effects of spherical aberration on visual acuity at different contrasts[J]. J Cataract Refract Surg, 2009, 35(8): 1389-1395.

[12] B Yang, B Liang, L Liu, et al.. Contrast sensitivity function after correcting residual wavefront aberrations during RGP lens wear[J]. Optom Vis Sci, 91(10): 1271-1277.

[13] H Hofer, L Chen, G Y Yoon, et al.. Improvement in retinal image quality with dynamic correction of the eye’s aberrations[J]. Opt Express, 2001, 8(11): 631-643.

[14] B Liang, R Liu, Y Dai, et al.. Effects of ocular aberrations on contrast detection in noise[J]. Journal of Vision, 2012, 12(8): 1-15.

[15] 李新阳. 自适应光学系统的模式复原算法和控制算法的优化研究[D]. 成都:中国科学院光电技术研究所, 2000: 28-29.

    Li Xinyang. Optimization of Modal Reconstruction Algorithm and Control Algorithm in Adaptive Optics System[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2000: 28-29.

[16] S S Chin, K M Hampson, E A H Mallen. Binocular correlation of ocular aberration dynamics[J]. Opt Express, 2008, 16(19): 14731.

[17] R S Harwerth, P M Fredenburg, E L Smith III. Temporal integration for stereoscopic vision[J]. Vision Res, 2003, 43(5): 505-517.

[18] B N Vlaskamp, G Yoon, M S Banks. Human stereopsis is not limited by the optics of the well-focused eye[J]. J Neurosci, 2011, 31(27): 9814-9818.

康健, 戴云, 梁波, 赵豪欣, 官春林, 汤国茂, 张雨东. 双眼高阶像差校正与视觉分析系统[J]. 光学学报, 2015, 35(10): 1033001. Kang Jian, Dai Yun, Liang Bo, Zhao Haoxin, Guan Chunlin, Tang Guomao, Zhang Yudong. Binocular Higher-Order Aberration Correction and Vision Analysis System[J]. Acta Optica Sinica, 2015, 35(10): 1033001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!