光学 精密工程, 2015, 23 (11): 3012, 网络出版: 2016-01-25   

基于光纤光栅阵列和MVDR算法的声发射定位

Acoustic emission location based on FBG array and MVDR algorithm
作者单位
山东大学 控制科学与工程学院, 山东 济南 250061
摘要
基于光纤光栅(FBG)传感器网络构建了声发射检测系统, 并提出了最小方差无失真响应(MVDR)的声发射源定位方法。构建的系统由7个FBG传感器组成传感器线阵列, 采用未经平坦的放大自发辐射(ASE)光源边缘滤波实现信号解调。利用Shannon小波变换从频散复杂的声发射信号中提取窄带信号, 并基于MVDR算法扫描整个监测区域获取空间谱。根据空间谱函数计算输出值, 并将计算的输出值作为像素值。最后, 通过提取空间谱中的最大值的坐标确定声发射源的位置。在LY12铝合金板上进行了实验验证。结果表明, 该方法在400 mm ×400 mm的区域内, 声发射定位的最大误差为9.4 mm, 平均误差为7.2 mm, 耗时小于3 s。该系统具有较高的实时性和定位精度, 是一种声发射源定位的新方法。
Abstract
An Acoustic Emission (AE) detection system based on a Fiber Bragg Grating(FBG) network was constructed and an AE location system by using Minimum Variance Distortionless Response (MVDR) algorithm was designed. In this system, linear FBG array constituted by seven FBGs was used to detect AE signals, and the edge filter technology using an unflatted Amplified Spontaneous Emission(ASE) source was applied to signal demodulation. Shannon wavelet transform was employed in extracting narrow signals of AE signals with complex frequency dispersion and the spatial spectrum could be obtained by canning over the monitoring area with the MVDR algorithm. The spatial spectrum function was used to calculate output values and the values were used as pixels. Finally, the AE source location was determined by the peak of spatial spectrum of MVDR. The system was verified on a LY12 aluminum alloy plate. The result shows that the maximum error and average error are 11.4 mm and 8.2 mm in a 400 mm ×400 mm monitoring area, respectively, and the average consumed time is less than 3 s. The system has higher real time ability and location accuracy, and is a new AE location technology.
参考文献

[1] KAPHLE M, TAN A C C, THAMBIRATNAM D P, et al.. Identication of acoustic emission wave modes for accurate source location in plate-like structures [J]. Structural Control and Health Monitoring, 2012, 19(2): 187-198.

[2] 吴晶, 吴晗平, 黄俊斌, 等.用于船舶结构监测的大量程光纤布拉格光栅应变传感器 [J].光学 精密工程, 2014, 22(2): 311-317.

    WU J, WU H P, HUANG J B, et al.. Large rang FBG sensor for ship structure health monitoring [J].Opt. Precision Eng., 2014, 22(2): 311-317.(in Chinese)

[3] 杨淑连, 何建廷, 魏芹芹, 等.强度调制的光纤布拉格光栅磁场传感器 [J].光学 精密工程, 2014, 22(3): 597-601.

    YANG SH L, HE J T, WEI Q Q, et al.. Intensity-modulated magnetic field sensor based on optical fiber Bragg grating [J].Opt. Precision Eng., 2014, 22(3): 597-601. (in Chinese)

[4] 吴入军, 郑百林, 贺鹏飞, 等. 埋入式光纤布拉格光栅传感器封装结构对测量应变的影响 [J]. 光学 精密工程, 2014, 22(1): 24-30.

    WU R J, ZHENG B L, HE P F, et al.. Influence of encapsulation structures for embedded fiber-optic Bragg grating sensors on strain measurement [J]. Opt. Precision Eng., 2014, 22(1): 24-30. (in Chinese)

[5] GAO X, ZHANG X P, LI N, et al.. Research on fiber Bragg grating acoustic emission technology applied in helicopter bearing detection [J]. Procedia Engineering, 2015, 99: 1203-1212.

[6] PANG D D, SUI Q M. Response analysis of ultrasonic sensing system based on fiber Bragg gratings of different lengths [J]. Photonic Sensors, 2014, 4: 281-288.

[7] AZMI A I, RAJU R, PENG G D, et al..Failure monitoring of E-glass/vinylester composites using fiber grating acoustic sensor [J]. Photonic Sensors, 2013, 3: 184-192.

[8] 朱永凯, 崇博, 林啸鸣, 等. 基于强度型光纤传感技术的复合材料薄板损伤声发射定位法 [J].无损检测, 2011, 33: 54-61.

    ZHU Y K, CHONG B, LIU X M, et al.. Composites sheet damage acoustic emission localization method based on optical fiber intensity sensing technology [J].Nondestructive Testing, 2011, 33: 54-61.(in Chinese)

[9] FU T, LIU Y, LAU K, et al.. Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors [J].Compos. Part B Eng., 2014, 66: 420-429.

[10] QIN Y X, LIANG Y J, ZHANG Y H, et al.. Experimental study on an optical fiber acoustic emission sensor array [C]. Harbin, ASOT, 2010: 299-302.

[11] JIANG M S, LU S Z, SAI Y Z, et al.. Acoustic emission source localization technique based on least squares support vector machine by using FBG sensors [J]. Journal of Modern Optics, 2014, 61: 1634-1640.

[12] PARK C Y, KIM J H, JUN S M, et al.. Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensor [J]. Adv. Compos. Mater., 2013, 21: 357-369.

[13] CHEN H, WAN Q, ZHANG X, et al.. Robust beamforming with inter-atom-interference mitigation approach for uniform circular arrays [J]. International Journal of Electronics and Communications, 2015, 69: 236-241.

[14] CHANG J. Combining genetic algorithm and Taylor series expansion approach for DOA estimation in space-time CDMA systems [J].Applied Soft Computing, 2015, 28: 208-216.

[15] 张伟, 师奕兵, 卢涛. 基于抗混叠Shannon小波包变换的声波测井曲线高分辨率处理方法 [J].电子测量与仪器学报, 2009, 23(5): 63-68.

    ZHANG W, SHI Y B, LU T.High-resolution processing of acoustic well logs based on anti-aliasing Shannon wavelet packet transform [J].Journal of Electronic Measurement and Instrument, 2009, 23(5): 63-68.(in Chinese)

[16] HONGO A, KOJIMA S, KOMATSUZAKI S. Applications of fiber Bragg grating sensors and high-speed interrogation techniques [J]. Structural Control and Health Monitoring, 2005, 12: 269-282.

[17] 邵翔, 张士晶, 欧阳未, 等.飞机蜂窝复合材料板压缩过程的声发射定位研究 [J].失效分析与预防, 2013, 8(3): 151-155.

    SHAO X, ZHANG SH J, OUYANG W, et al.. Acoustic emission location on compression process of aircraft cellular composite materials [J]. Failure Analysis and Prevention, 2013, 8(3): 151-155.(in Chinese)

赛耀樟, 姜明顺, 隋青美, 路士增, 贾磊. 基于光纤光栅阵列和MVDR算法的声发射定位[J]. 光学 精密工程, 2015, 23(11): 3012. SAI Yao-zhang, JIANG Ming-shun, SUI Qing-mei, LU Shi-zeng, JIA Lei. Acoustic emission location based on FBG array and MVDR algorithm[J]. Optics and Precision Engineering, 2015, 23(11): 3012.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!