中国激光, 2017, 44 (4): 0402006, 网络出版: 2017-04-10   

基于微流控技术的高效液相脉冲激光烧蚀法

Efficient Pulsed Laser Ablation in Liquid Based on Microfluidic Technology
作者单位
1 吉林大学集成光电子学国家重点联合实验室吉林大学实验区, 吉林 长春 130012
2 西安交通大学机械工程学院, 陕西 西安 710049
摘要
液相脉冲激光烧蚀法(PLAL)具有绿色环保、适用范围广及可制备复合材料等优点, 受到学术界的广泛关注, 但是较低的制备效率限制了它进一步发展。将微流控技术与液相脉冲激光烧蚀法相结合, 在硅基微流控芯片中实现了快速高效制备晶格型(400~800 nm)和球型(100~300 nm)硅纳米结构。通过扫描电子显微镜和光谱仪对其形貌结构及分布情况进行了测试表征, 获得了微流控流速、激光烧蚀功率与纳米粒子制备效率之间的关系。该方法将液相脉冲激光烧蚀法的最高制备效率提高了30%以上, 达到87.5 mg/min, 为将来液相脉冲激光烧蚀法工业化生产提供一种新的技术路线。
Abstract
Pulsed laser ablation in liquid (PLAL) has attracted significant interest in the academic community for its remarkable characteristics of environment protection, wide application range and capable for composite material preparation. But the relative lower preparation rate of PLAL prevents it from further development. Silicon nanostructures with lattice (400~800 nm) and spherical (100~300 nm) patterns on microfluidic chip with promoted production rate is achieved by combining microfluidic technology and PLAL. The morphology structure and distribution are characterized by scanning electron microscope and spectrometer. The relationships between preparation rate of nanoparticles and microfluidic flow velocity as well as laser ablation power are obtained. The maximum preparation rate of PLAL enhances by 30%, up to 87.5 mg/min by the proposed method. Which provides a new technique route of PLAL industrial production.
参考文献

[1] Zeng H B, Du X W, Singh S C, et al. Nanomaterials via laser ablation/irradiation in liquid: a review[J]. Adv Funct Mater, 2012, 22(7): 1333-1353.

[2] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution [J]. Phys Chem Chem Phys, 2013, 15(9): 3027-3046.

[3] Valverde-Alva M A, García-Fernández T, Esparza-Alegría E, et al. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)[J]. Laser Phys Lett, 2016, 13(10): 106002.

[4] Camarda P, Messina F, Vaccaro L, et al. Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution[J]. J Appl Phys, 2016, 120(12): 124312.

[5] 方 合, 王顺利, 李立群, 等. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能[J]. 物理学报, 2011, 60(9): 096102.

    Fang He, Wang Shunli, Li Liqun, et al. Synthesis and photoluminescence of ZnO and Zn/ZnO nanoparticles prepared by liquid-phase pulsed laser ablation[J]. Acta Physica Sinica, 2011, 60(9): 096102.

[6] Usui H, Shimizu Y, Sasaki T, et al. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions[J]. J Phys Chem B, 2005, 109(1): 120-124.

[7] Tan D Z, Ma Z J, Xu B B, et al. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution[J]. Phys Chem Chem Phys, 2011, 13(45): 20255-20261.

[8] Tan D Z, Zhou S F, Xu B B, et al. Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence[J]. Carbon, 2013, 62: 374-381.

[9] Wang J B, Yang G W, Zhang C Y, et al. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid-solid interfacial reaction[J]. Chem Phys Lett, 2003, 367(1-2): 10-14.

[10] Henglein A, Holzwarth A, Janata E. Chemistry of colloidal silver: reactions of lead atoms and small lead aggregates with Agn[J]. Ber Bunsenges Phys Chem, 1993, 97(11): 1429-1434.

[11] Fojtik A, Giersig M, Henglein A, et al. Formation of nanometer-size silicon particles in a laser-induced plasma in SiH4[J]. Ber Bunsenges Phys Chem, 1993, 97(11): 1493-1496.

[12] Amendola V, Meneghetti M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation[J]. J Mater Chem, 2007, 17(17): 4705-4710.

[13] Ganeev R A, Baba M, Ryasnyansky A I, et al. Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids[J]. Opt Commun, 2004, 240(4-6): 437-448.

[14] Stratakis E, Barberoglou M, Fotakis C, et al. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses[J]. Opt Express, 2009, 17(15): 12650-12659.

[15] Mafuné F, Kohno J, Takeda Y, et al. Formation and size control of silver nanoparticles by laser ablation in aqueous solution[J]. J Phys Chem B, 2000, 104(39): 9111-9117.

[16] Lee I, Han S W, Kim K, et al. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys[J]. Chem Commun, 2001, 18(18): 1782-1783.

[17] Sylvestre J P, Kabashin A V, Sacher E, et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins[J]. J Am Chem Soc, 2004, 126(23): 7176-7177.

[18] Han H F, Fang Y, Li Z P, et al. Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation[J]. Appl Phys Lett, 2008, 92(2): 023116.

[19] 李双浩, 赵 艳. 激光液相烧蚀法制备金核银壳纳米结构及其性能的研究[J]. 中国激光, 2014, 41(7): 0706001.

    Li Shuanghao, Zhao Yan. Fabrication and properties of Au/Ag core/shell nanostructures prepared by laser ablation in liquid solutions[J]. Chinese J Lasers, 2014, 41(7): 0706001.

[20] 赵士强, 李 凌. 飞秒脉冲激光烧蚀金膜的相变传热研究[J]. 光学学报, 2015, 35(12): 1214001.

    Zhao Shiqiang, Li Ling. Numerical investigation of phase change during thermal ablation of gold films induced by femtosecond laser[J]. Acta Optica Sinica, 2015, 35(12): 1214001.

[21] Streubel R, Barcikowski S, Gkce B, et al. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids[J]. Opt Lett, 2016, 41(7): 1486-1489.

[22] Brsch N, Jakobi J, Weiler S, et al. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone[J]. Nanotechnology, 2009, 20(44): 445603.

[23] Asahi T, Mafuné F, Rehbock C, et al. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications[J]. Appl Surf Sci, 2015, 348: 1-3.

[24] Eliezer S, Eliaz N, Grossman E, et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Phys Rev B, 2004, 69(14): 1124-1133.

[25] 吴 寒, 张 楠, 何 淼, 等. 氩、铝原子相互作用势的计算及其在飞秒激光烧蚀分子动力学模拟中的应用[J]. 中国激光, 2016, 43(8): 0802004.

    Wu Han, Zhang Nan, He Miao, et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation[J]. Chinese J Lasers, 2016, 43(8): 0802004.

[26] Wang C X, Liu P, Cui H, et al. Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid[J]. Appl Phys Lett, 2005, 87(20): 201913.

关凯珉, 刘晋桥, 徐颖, 于颜豪. 基于微流控技术的高效液相脉冲激光烧蚀法[J]. 中国激光, 2017, 44(4): 0402006. Guan Kaimin, Liu Jinqiao, Xu Ying, Yu Yanhao. Efficient Pulsed Laser Ablation in Liquid Based on Microfluidic Technology[J]. Chinese Journal of Lasers, 2017, 44(4): 0402006.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!