量子电子学报, 2016, 33 (1): 98, 网络出版: 2016-03-22  

气溶胶雷达比和波长指数的仿真研究

Simulation of lidar ratios and Angstr m exponents of different aerosols
作者单位
西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
摘要
为深入研究气溶胶光散射特性,以米散射理论和粒谱分布为基础,仿真计算了多种气溶胶的 雷达比和波长指数,研究了二者与入射光波长、气溶胶尺寸及复折射率之间的关系。仿真结果表明 水云和雾在355 nm、532 nm和1064 nm波长的激光雷达比均约为19 sr,波长指数的绝对值很小,表明消 光系数与波长之间不存在明显的依存关系。大陆型气溶胶的雷达比与其中soot型气溶胶的含量正相 关,这与soot型气溶胶的强吸收性有关。大陆型气溶胶在532 nm波长的雷达比最大,在355 nm和1064 nm的 雷达比相对较小。大陆型气溶胶的消光系数随波长增加而减小,其波长指数的平均值约为1.3。
Abstract
Based on the theory of Mie scattering and assumption of particle size distribution, lidar ratios and Angstr?m exponents of many kinds of aerosols were simulated for investigating the light scattering property of aerosols. The relationships between these two parameters and the wavelength of incident light, the size and refractive index of aerosols were researched. The simulation results show that the lidar ratios of water clouds and fog at 355 nm, 532 nm and 1064 nm are all approximately 19 sr. The absolute values of their Angstr?m exponents are very small, which reveals that there is no obvious dependency between extinction coefficient and wavelength. Due to the strong absorption of soot, the lidar ratios of continental aerosols are found to be positively correlated with the content of soot. The continental aerosols have the maximum lidar ratio at 532 nm. The mean value of Angstr?m coefficients is approximately 1.3, and their extinction coefficients decrease with increasing wavelength.
参考文献

[1] Jin Lei, Wu Songhua, et al. Doppler lidar observation of aerosols over Beijing during spring 2011[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 46-51 (in Chinese).

[2] Zhao Hu, Hua Dengxin, Di Huige. Development of all time multi-wavelength lidar system and analysis of its signal to noise ratio[J]. Chinese Journal of Lasers (中国激光), 2015, 42(1): 0113001-1-0113001-8 (in Chinese).

[3] Wang Xiangchuan, Rao Ruizhong. Lidar ratios for atmospheric aerosol and cloud particles[J]. Chinese Journal of Lasers (中国激光), 2005, 32(10): 1321-1324 (in Chinese).

[4] Wang Xiangchuan. Lidar ratios for slightly non-spherical atmospheric aerosol particles[J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2008, 3(2): 111-114 (in Chinese).

[5] Wang Jin, Zhang Lei, Wang Hongbin, et al. Lidar observations of spatial and temporal variations of cirrus clouds over semi-arid areas in Northwest[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 66-72 (in Chinese).

[6] Wu Decheng, Liu Bo, Qi Fudi. Tropospheric aerosols optical properties measured by a Raman-Mie lidar[J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2011, (1): 18-2(in Chinese).

[7] Zhang Chaoyang, Su Lin, Chen Liangfu. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chinese Journal of Lasers (中国激光), 2013, 40(5): 05130021-0513002(in Chinese).

[8] Di Huige, Hou Xiaolong, Zhao Hu, et al. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar[J]. Acta Physic Sinica (物理学报), 2014, 63(24): 24420(in Chinese).

[9] Bo Guangyu, Xie Chenbo, Wang Bangxin, et al. Case study of the relationship between aerosol Angstr m exponent and relative humidity[J]. Chinese Journal of Lasers (中国激光), 2015, 42(7): 0713002-1-0713002-(in Chinese).

[10] Jung C H, Lee J Y, et al. Changes in the Angstr m exponent during aerosol coagulation and condensation[J]. Asian Journal of Atmospheric Environment, 2012, (4): 304-313.

[11] Choi S C, Baik S H, Park S K, et al. The measurement of the lidar ratio by using the rotational Raman lidar[J]. Journal of the Optical Society of Korea, 2010, 14(3): 174-177.

[12] Tao Zongming, Liu Dong, Shi Bo, et al. Relationship between backscatter coefficient and wavelength of strong cirrus cloud based on a three-wavelength lidar measurements[J]. Transactions of Beijing Institute of Technology (北京理工大学学报), 2013, 33(8): 857-861 (in Chinese).

[13] Wang Yufeng, Gao Fei, Zhu Chengxuan. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica (光学学报), 2015, 35(3): 0328004-1-0328004-10 (in Chinese).

[14] Yan qing, Hua Dengxin, Li Shichun, et al. Observation and productization of the micro-pulsed Mie scattering lidar system[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 123-128 (in Chinese).

[15] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.

[16] Hu Yongxiang. Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters, 2007, 34(11): 11812-1-11812-4.

宋跃辉, 时丽丽, 鲁雷雷, 李仕春, 辛文辉, 闫庆, 华灯鑫. 气溶胶雷达比和波长指数的仿真研究[J]. 量子电子学报, 2016, 33(1): 98. SONG Yuehui, SHI Lili, LU Leilei, LI Shichun, XIN Wenhui, YAN Qing, HUA Dengxin. Simulation of lidar ratios and Angstr m exponents of different aerosols[J]. Chinese Journal of Quantum Electronics, 2016, 33(1): 98.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!