激光与光电子学进展, 2019, 56 (9): 090004, 网络出版: 2019-07-05  

全电介质纳米颗粒的制造及其应用 下载: 1448次

Fabrication and Application of All-Dielectric Nanoparticles
马浩 1,2,3赵元安 1,2,3,4,*邵建达 1,2,3
作者单位
1 中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院强激光材料重点实验室, 上海 201800
4 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 长春 130033
引用该论文

马浩, 赵元安, 邵建达. 全电介质纳米颗粒的制造及其应用[J]. 激光与光电子学进展, 2019, 56(9): 090004.

Hao Ma, Yuanan Zhao, Jianda Shao. Fabrication and Application of All-Dielectric Nanoparticles[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090004.

参考文献

[1] Zhang G Q, Lan C W, Bian H L, et al. Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing[J]. Optics Express, 2017, 25(18): 22038-22045.

[2] Landau LD, Lifshitz EM. Steady current: chapter Ⅲ[M]. Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. Oxford: Butterworth-Heinemann, 1984.

[3] Merlin R. Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1693-1698.

[4] Grigorenko A N, Geim A K, Gleeson H F, et al. Nanofabricated media with negative permeability at visible frequencies[J]. Nature, 2005, 438(7066): 335-338.

[5] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1: 41-48.

[6] Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero (ENZ) media[J]. Physical Review B, 2007, 75(7): 075119.

[7] Hentschel M, Schäferling M, Weiss T, et al. Three-dimensional chiral plasmonic oligomers[J]. Nano Lett, 2012, 12(5): 2542-2547.

[8] Plum E, Zhou J, Dong J, et al. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3): 035407.

[9] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6: 737-748.

[10] 任梦昕, 许京军. 表面等离子体激元增强非线性的原理及应用[J]. 激光与光电子学进展, 2013, 50(8): 080002.

    Ren M X, Xu J J. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.

[11] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced raman scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667-1670.

[12] Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[13] 王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

    Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

[14] Soukoulis C M, Koschny T, Zhou J F, et al. Magnetic response of split ring resonators at terahertz frequencies[J]. Physica Status Solidi (b), 2007, 244(4): 1181-1187.

[15] HopkinsB, Miroshnichenko AE, Kivshar YS. All-dielectric nanophotonic structures: exploring the magnetic component of light (Chapter 10)[M]. Hopkins B, Miroshnichenko A E, Kivshar Y S. Recent Trends in Computational Photonics. Cham: Springer International Publishing, 2017.

[16] Evlyukhin A B, Reinhardt C, Seidel A, et al. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 2010, 82(4): 045404.

[17] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen Der Physik, 1908, 330(3): 377-445.

[18] Wheeler M S, Aitchison J S, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies[J]. Physical Review B, 2005, 72(19): 193103.

[19] Popa B I, Cummer S A. Compact dielectric particles as a building block for low-loss magnetic metamaterials[J]. Physical Review Letters, 2008, 100(20): 207401.

[20] Schuller J A, Zia R, Taubner T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10): 107401.

[21] Ginn J C, Brener I, Peters D W, et al. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters, 2012, 108(9): 097402.

[22] Rolly B, Bebey B, Bidault S, et al. Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances[J]. Physical Review B, 2012, 85(24): 245432.

[23] Albella P, Poyli M A, Schmidt M K, et al. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26): 13573-13584.

[24] Dmitriev P A, Baranov D G, Milichko V A, et al. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response[J]. Nanoscale, 2016, 8(18): 9721-9726.

[25] Krasnok A, Glybovski S, Petrov M, et al. Demonstration of the enhanced Purcell factor in all-dielectric structures[J]. Applied Physics Letters, 2016, 108(21): 211105.

[26] Shcherbakov M R, Neshev D N, Hopkins B, et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response[J]. Nano Letters, 2014, 14(11): 6488-6492.

[27] Makarov S, Kudryashov S, Mukhin I, et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma[J]. Nano Letters, 2015, 15(9): 6187-6192.

[28] Shcherbakov M R, Vabishchevich P P, Shorokhov A S, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures[J]. Nano Letters, 2015, 15(10): 6985-6990.

[29] Baranov D G, Makarov S V, Milichko V A, et al. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures[J]. ACS Photonics, 2016, 3(9): 1546-1551.

[30] Maier S A. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Optics Express, 2006, 14(5): 1957-1964.

[31] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438-483.

[32] Agio M. Optical antennas as nanoscale resonators[J]. Nanoscale, 2012, 4(3): 692-706.

[33] Seok T J, Jamshidi A, Kim M, et al. Radiation engineering of optical antennas for maximum field enhancement[J]. Nano Letters, 2011, 11(7): 2606-2610.

[34] Khurgin J B. How to deal with the loss in plasmonics and metamaterials[J]. Nature Nanotechnology, 2015, 10(1): 2-6.

[35] Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances[J]. Optics and Photonics News, 2017, 28(1): 24-31.

[36] Vuye G, Fisson S, Van V N, et al. Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry[J]. Thin Solid Films, 1993, 233(1/2): 166-170.

[37] Bohren CF, Huffman DR. Absorption and scattering of light by small particles[M]. Canada: John Wiley & Sons, 1983.

[38] Jorik V D G, Brenny B J M, et al. . Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 2016, 24(3): 2047-2064.

[39] Staude I, Miroshnichenko A E, Decker M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 7824-7832.

[40] Spinelli P, Verschuuren M A, Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications, 2012, 3(2): 692-692.

[41] Shi L, Tuzer T U, Fenollosa R, et al. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities[J]. Advanced Materials, 2012, 24(44): 5934-5938.

[42] Proust J, Bedu F, Chenot S, et al. Chemical alkaline etching of silicon Mie particles[J]. Advanced Optical Materials, 2015, 3(9): 1280-1286.

[43] Shi L, Harris J T, Fenollosa R, et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region[J]. Nature Communications, 2013, 4(5): 1904-1910.

[44] Abbarchi M, Naffouti M, Vial B, et al. Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting[J]. ACS Nano, 2014, 8(11): 11181-11190.

[45] Naffouti M, David T, Benkouider A, et al. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting[J]. Nanoscale, 2016, 8(14): 2844-2849.

[46] Zhang P P, Yang B, Rugheimer P P, et al. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175309.

[47] Fu Y H, Kuznetsov A I, Miroshnichenko A E, et al. Directional visible light scattering by silicon nanoparticles[J]. Nature Communications, 2013, 4(2): 1527-1533.

[48] Okamoto S, Inaba K, Iida T, et al. Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials[J]. Scientific Reports, 2014, 4(4): 5186-5190.

[49] Bohandy J, Kim B F, Adrian F J, et al. Metal deposition at 532 nm using a laser transfer technique[J]. Journal of Applied Physics, 1988, 63(4): 1158-1162.

[50] Zywietz U, Evlyukhin A B, Reinhardt C, et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses[J]. Nature Communications, 2014, 5(1): 3402-3409.

[51] Cai WS, ShalaevV. Optical metamaterials: fundamentals and applications[M]. New York: Springer Science and Business Media, 2009.

[52] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[53] Lewin L. Theelectrical constants of a material loaded with spherical particles[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1947, 94(27): 65-68.

[54] Ahmadi A, Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials[J]. Physical Review B, 2008, 77(4): 045104.

[55] Moitra P, Slovick B A, Li W, et al. Large-scale all-dielectric metamaterial perfect reflectors[J]. ACS Photonics, 2015, 2(6): 692-698.

[56] Moitra P, Slovick B A, Zhi G Y, et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J]. Applied Physics Letters, 2014, 104(17): 171102.

[57] Esfandyarpour M, Garnett E C, Cui Y, et al. Metamaterial mirrors in optoelectronic devices[J]. Nature Nanotechnology, 2014, 9(7): 542-547.

[58] Schwanecke A S, Fedotov V A, Khardikov V V, et al. Optical magnetic mirrors[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(1): L1-L2.

[59] Fedotov V A, Rogacheva A V, Zheludev N I, et al. Mirror that does not change the phase of reflected waves[J]. Applied Physics Letters, 2006, 88(9): 091119.

[60] Wu C H, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 2012, 11(1): 69-75.

[61] Piper J R, Fan S H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance[J]. ACS Photonics, 2014, 1(4): 347-353.

[62] Zhang S P, Bao K, Halas N J, et al. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663.

[63] 徐志超, 李娜, 段宝岩. 基于太阳能收集的宽频螺旋纳米天线设计[J]. 光学学报, 2017, 37(8): 0826003.

    Xu Z C, Li N, Duan B Y. Design of broadband spiral nanoantenna based on solar energy harvesting[J]. Acta Optica Sinica, 2017, 37(8): 0826003.

[64] Kim K, Kim J H, Park H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring[J]. Journal of Controlled Release, 2010, 146(2): 219-227.

[65] Krasnok A E, Miroshnichenko A E, Belov P A, et al. Huygens optical elements and Yagi—Uda nanoantennas based on dielectric nanoparticles[J]. JETP Letters, 2011, 94(8): 593-598.

[66] Krasnok A E, Miroshnichenko A E, Belov P A, et al. All-dielectric optical nanoantennas[J]. Optics Express, 2012, 20(18): 20599-20604.

[67] Krasnok A E, Filonov D S, Simovski C R, et al. Experimental demonstration of superdirective dielectric antenna[J]. Applied Physics Letters, 2014, 104(13): 133502.

[68] Krasnok A E, Simovski C R, Belov P A, et al. Superdirective dielectric nanoantennas[J]. Nanoscale, 2014, 6(13): 7354-7361.

[69] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

[70] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834.

[71] Fattal D, Li J J, Peng Z, et al. Flat dielectric grating reflectors with focusing abilities[J]. Nature Photonics, 2010, 4(7): 466-470.

[72] Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at teleco-mmunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358-5362.

[73] 曹建国, 周译玄. 栅状结构石墨烯超材料的太赫兹波偏振调制[J]. 激光与光电子学进展, 2018, 55(9): 092501.

    Cao J G, Zhou Y X. Polarization modulation of terahertz wave by graphene metamaterial with grating structure[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092501.

[74] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943.

[75] Shalaev M I, Sun J B, Tsukernik A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 2015, 15(9): 6261-6266.

[76] Zhao Q, Zhou J, Zhang F, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12): 60-69.

[77] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.

[78] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 2002, 415(6872): 621-623.

[79] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics[J]. Nature Photonics, 2010, 4(8): 535-544.

[80] Noskov R E, Krasnok A E, Kivshar Y S. Nonlinear metal-dielectric nanoantennas for light switching and routing[J]. New Journal of Physics, 2012, 14(9): 093005.

[81] 吴永宇, 张小平, 单欣岩, 等. 一种硅基二氧化硅结构的超快全光开关[J]. 激光与光电子学进展, 2018, 55(4): 041303.

    Wu Y Y, Zhang X P, Shan X Y, et al. An ultrafast all-optical switch with silicon-based silica structure[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041303.

[82] Sokolowski-Tinten K, von der Linde D. Generation of dense electron-hole plasmas in silicon[J]. Physical Review B, 2000, 61(4): 2643-2650.

[83] Yang Y M, Wang W Y, Boulesbaa A, et al. Nonlinear fano-resonant dielectric metasurfaces[J]. Nano Letters, 2015, 15(11): 7388-7393.

马浩, 赵元安, 邵建达. 全电介质纳米颗粒的制造及其应用[J]. 激光与光电子学进展, 2019, 56(9): 090004. Hao Ma, Yuanan Zhao, Jianda Shao. Fabrication and Application of All-Dielectric Nanoparticles[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!