大气与环境光学学报, 2012, 7 (5): 348, 网络出版: 2012-10-08  

光照对柠檬烯臭氧氧化产生二次有机气溶胶的影响

Effect of Illumination on Secondary Organic Aerosol Formation from Ozonolysis of Limonene
作者单位
中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
摘要
作为一种重要的生物源挥发性有机物,柠檬烯的臭氧氧化是大气环境中二次有机气溶胶(SOA)的重要来源之一。基于实验 室烟雾箱模拟系统,研究了紫外光照对柠檬烯臭氧氧化形成SOA的影响。实验分别对无光照(即“暗反应”)和有光 照条件下反应前体物的消耗、SOA的质量浓度以及SOA的粒径分布随时间的变化等进行了实时探测,并结合气粒分配 模型对产率进行了分析。研究结果表明在相应的实验条件下,紫外光照会导致SOA产率下降10%~16%,而气相氧化 阶段相关中间产物或者最终产物的光化学反应可能是导致产率下降的重要原因之一。
Abstract
As an important biogenic volatile organic compound, ozonolysis of limonene is a significant source of atmospheric secondary organic aerosol (SOA). Quantitative research on ozonolysis of limonene was reported under both dark and UV-illuminated conditions in the self-made smog chamber. The time evolutions of limonene precursor, SOA mass concentration as well as SOA particle size distributions were investigated continuously, and the yield of SOA was analyzed according to the gas/particle partitioning theory. It is shown that exposure to UV light reduces SOA yield by 10%~16% under corresponding conditions, and it is proposed that gas-phase photolysis of some intermediate or final products may play a key role in the decline of yields in the presence of UV light.
参考文献

[1] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change [M]. 2nd edition, New York: John Wiley & Sons, 2006.

[2] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issures [J]. Atmos. Chem. Phys., 2009, 9(14): 5155-5236.

[3] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions [J]. J. Geophys. Res., 1995, 100(D5): 8873-8892.

[4] Stroud C, Makar P, Karl T, et al. Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: results from the CELTIC field study [J]. J. Geophys. Res., 2005, 110(D17): D17303.

[5] Weschler C J, Shields H C. Indoor ozone/terpene reactions as a source of indoor particles [J]. Atmos. Environ., 1999, 33(15): 2301-2312.

[6] Leungsakul S, Jaoui M, Kamens R M. Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone [J]. Environ. Sci. Technol., 2005, 39(24): 9583-9594.

[7] Maksymiuk C S, Gayahtri C, Gil R R, et al. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy [J]. Phys. Chem. Chem. Phys., 2009, 11(36): 7810-7818.

[8] Walser M L, Desyaterik Y, Laskin J, et al. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene [J]. Phys. Chem. Chem. Phys., 2008, 10(7): 1009-1022.

[9] Pan X, Underwood J S, Xing J H, et al. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry [J]. Atmos. Chem. Phys., 2009, 9(12): 3851-3865.

[10] Nφjgaard J K, Bilde M, Stengy C, et al. The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors [J]. Atmos. Environ., 2006, 40(6): 1030-1042.

[11] Zhang J Y, Hartz K E H, Pandis S N, et al. Secondary organic aerosol formation from limonene ozonolysis: homogeneous and heterogeneous influences as a function of NOx [J]. J. Phys. Chem. A., 2006, 110(38): 11053-11063.

[12] Saathoff H, Naumann K H, Moehler O, et al. Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene [J]. Atmos. Chem. Phys., 2009, 9(5): 3851-3865.

[13] Jonsson M, Hallquist M, Ljungstr m E. The effect of temperature and water on secondary organic aerosol formation from ozonolysis of limonene, Δ3-carene and α-pinene [J]. Atmos. Chem. Phys., 2008, 8(21): 6541-6549.

[14] Griffin R J, Cocker D R, Flagan R C, et al. Organic aerosol formation from oxidation of biogenic hydrocarbons [J]. J. Geophys. Res., 1999, 104(D3): 3555-3567.

[15] Presto A A, Hartz K E H, Donahue N M. Secondary organic aerosol production from terpene ozonolysis. 1. effect of UV radiation [J]. Environ. Sci. Technol., 2005, 39(18): 7028-7037.

[16] http://www.eurochamp.org/ [OL].

[17] 王文兴, 束用辉, 李金花. 煤烟粒子中PAH- S光化学降解的动力学 [J]. 中国环境科学, 1997, 17(2): 97-102.

    Wang Wenxing, Shu Yonghui, Li Jinhua. Photochemical degradation of PAH- S on smoke particles in atmosphere [J]. China Environmental Science, 1997, 17(2): 97-102(in Chinese).

[18] 张远航, 邵可声, 唐孝炎. 中国城市光化学烟雾污染研究 [J]. 北京大学学报(自然科学版), 1998, 34(2-3): 392-400.

    Zhang Yuanhang, Shao Kesheng, Tang Xiaoyan. The study of urban photochemical smog pollution in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1998, 34(2-3): 392-400(in Chinese).

[19] 武 山, 郝吉明, 吕子峰, 等. 硫酸铵气溶胶对甲苯-NOx -空气体系光化学反应的影响 [J]. 环境科学, 2007, 28(6): 1183-1187.

    Wu Shan, Hao Jiming, Lu Zifeng, et al. Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/NOx /air mixture [J]. Environmental Science, 2007, 28(6): 1183-1187(in Chinese).

[20] Wu H, Mou Y J. Rate constant and products for the reaction of Cl atom with n-butyaldehyde [J]. Int. J. Chem. Kinet., 2007, 39(3): 168-174.

[21] Du L, Xu Y F, Ge M F, et al. Rate constant for the reaction of ozone with diethyl sulfide [J]. Atmos. Environ., 2007, 41(35): 7434-7439.

[22] Pan G, Hu C J, Wang Z Y, et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2012, 26(2): 189-194.

[23] Liu X Y, Zhang W J, Huang M Q, et al. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene [J]. J. Environ. Sci., 2009, 21(4): 447-451.

[24] Odum J R, Hoffmann T, Bowman F, et al. Gas/particle partitioning and secondary organic aerosol yields [J]. Environ. Sci. Technol., 1996, 30(8): 2580-2585.

[25] Wirtz K, Martin-Reviejo M. Density of secondary organic aerosols [J]. J. Aerosol. Sci., 2003, 34: S223-S224.

[26] Cocker D R, Flagan R C, Seinfeld J H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry [J]. Environ. Sci. Technol., 2001, 35(12): 2594-2601.

[27] Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons [J]. Atmos. Environ., 2003, 37(24): 3413-3424.

[28] Pankow J F. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol [J]. Atmos. Environ., 1994, 28(2): 189-193.

[29] Cao G, Jang M. Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx [J]. Atmospheric Environment, 2007, 41(35): 7603-7613.

刘志, 胡长进, 程跃, 潘刚, 郑晓宏, 顾学军, 赵卫雄, 张为俊. 光照对柠檬烯臭氧氧化产生二次有机气溶胶的影响[J]. 大气与环境光学学报, 2012, 7(5): 348. LIU Zhi, HU Chang-jin, CHENG Yue, PAN Gang, ZHENG Xiao-hong, GU Xue-jun, ZHAO Wei-xiong, ZHANG Wei-jun. Effect of Illumination on Secondary Organic Aerosol Formation from Ozonolysis of Limonene[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(5): 348.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!