Author Affiliations
Abstract
1 State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
4 Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
Structured illumination microscopy (SIM) achieves super-resolution (SR) by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction. The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain, it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary, besides, the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts. Here, we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets, and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets (the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function (OTF)). Experiments on reconstructing raw datasets including nonbiological, biological, and simulated samples demonstrate that our method has SR capability, high reconstruction speed, and high robustness to aberration and noise.
Structured illumination microscopy image reconstruction spatial domain digital micromirror device (DMD) 
Journal of Innovative Optical Health Sciences
2024, 17(2): 2350021
Author Affiliations
Abstract
1 State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
2 Zhejiang Lab, Hangzhou, China
3 Ningbo Innovation Center, Zhejiang University, Ningbo, China
Structure illumination microscopy (SIM) imposes no special requirements on the fluorescent dyes used for sample labeling, yielding resolution exceeding twice the optical diffraction limit with low phototoxicity, which is therefore very favorable for dynamic observation of live samples. However, the traditional SIM algorithm is prone to artifacts due to the high signal-to-noise ratio (SNR) requirement, and existing deep-learning SIM algorithms still have the potential to improve imaging speed. Here, we introduce a deep-learning-based video-level and high-fidelity super-resolution SIM reconstruction method, termed video-level deep-learning SIM (VDL-SIM), which has an imaging speed of up to 47 frame/s, providing a favorable observing experience for users. In addition, VDL-SIM can robustly reconstruct sample details under a low-light dose, which greatly reduces the damage to the sample during imaging. Compared with existing SIM algorithms, VDL-SIM has faster imaging speed than existing deep-learning algorithms, and higher imaging fidelity at low SNR, which is more obvious for traditional algorithms. These characteristics enable VDL-SIM to be a useful video-level super-resolution imaging alternative to conventional methods in challenging imaging conditions.
deep learning structure illumination microscopy video-level imaging super-resolution imaging 
Advanced Imaging
2024, 1(1): 011001
作者单位
摘要
1 季华实验室, 广东 佛山 528000
2 佛山科学技术学院, 广东 佛山 528000
3 沈阳芯源微电子设备股份有限公司, 辽宁 沈阳 110168
为缩短12寸晶圆检测成像系统的轴向和径向尺寸,提出一种小角度棱镜折转光路与超短物像距镜头相结合的解决方法。设计优于1/12λλ=632.8 nm)面形精度的小角度棱镜折转光路,实现照明系统与成像镜头的水平布置,径向尺寸仅为80 mm,在保证不影响系统成像质量的前提下,极大地降低了整个系统的径向尺寸,同时也实现了12°的小角度明场照明。设计放大倍率为0.264的对称混合型光学系统,采用纯球面系统获得较大成像视场,像高为81.92 mm,物像距仅为392.5 mm,极大地降低了整个系统轴向尺寸。设计结果表明,整个成像系统全视场平均光学传递函数优于0.4@100l p/mm,相对畸变优于0.03%,像面照度均匀性全视场优于50%。实际测试结果表明:全视场实际成像分辨率优于18.88 μm,达到了系统极限分辨率;全视场像面照度均匀性为43.3%,满足均匀性优于40%的研制要求。研究结果表明本文提出的超薄超短物像距高分辨率检测成像系统合理、有效,解决了12寸晶圆检测成像系统空间尺寸压缩的难题,并降低了研制成本,为后续近距离大尺寸物体检测成像系统的研制提供参考依据。
棱镜 物像距 对称混合型光学系统 像面照度均匀性 prism object-image distance symmetric hybrid optical system image surface illumination uniformity 
中国光学
2024, 17(1): 61
李香兰 1,2金霞 3吕金光 1郑凯丰 1,*[ ... ]梁静秋 1,*
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国电子科技集团公司第四十六研究所, 天津 300220
本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80 μm×80 μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此外,分别采用反向畸变处理方法和像素灰度调制方法用以解决车灯投影图像的梯形畸变和照度均匀性问题,并搭建了投影实验平台,对图像校正方法进行了验证。实验结果表明:校正后图像梯形畸变系数p1p2分别从0.0932和0.3680下降至0.0835和0.0373,像面照度均匀性从83.2%提高到93.2%。本文通过对基于Micro LED的倾斜投影车灯光学系统进行优化设计及采用图像校正方法,实现了高光效、低畸变的车灯投影。
车灯投影光学系统 光学设计 Micro LED 照度均匀性 梯形畸变 headlight projection optical system optical design Micro LED illumination uniformity trapezoidal distortion 
中国光学
2024, 17(1): 89
邹鸿博 1章彪 1王子川 1陈可 2[ ... ]袁波 1,*
作者单位
摘要
1 浙江大学 光电科学与工程学院, 浙江 杭州 310027
2 之江实验室类人感知研究中心, 浙江 杭州 311100
细胞内镜需实现最大倍率约500倍的连续放大成像,受光纤照明及杂散光的影响,其图像存在不均匀光照,且光照分布会随放大倍率的变化而变化。这会影响医生对病灶的观察及判断。为此,本文提出一种基于细胞内镜光照模型的图像不均匀光照校正算法。根据图像信息由光照分量和反射分量组成这一基础,该算法通过卷积神经网络学习图像的光照分量,并基于二维Gamma函数实现不均匀光照校正。实验表明,经本文方法进行不均匀光照校正后,图像的光照分量平均梯度和离散熵分别为0.22和7.89,优于自适应直方图均衡化、同态滤波和单尺度Retinex等传统方法以及基于深度学习的WSI-FCN算法。
细胞内镜 不均匀光照 光照模型 卷积神经网络 cytoendoscopy non-uniform illumination illumination model convolutional neural network 
中国光学
2024, 17(1): 160
马旺 1,2千佳 1王思颖 1马睿 1[ ... ]姚保利 1,2,**
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
将普通光学显微镜的均匀照明替换为光场具有空间结构分布的照明,可为显微镜增添超分辨和光切片的新功能。结构光照明显微(SIM)技术与传统宽场光学显微镜具有良好的结构兼容性,继承了传统光学显微镜非侵入、低光毒性、低荧光漂白、快速成像的优点。其高时空分辨率和三维光切片能力非常适合活体细胞或组织的观测,受到生物医学和光学界的持续关注。快速产生高对比度、高频率的结构光场并进行快速相移和旋转调控是SIM的核心技术。近年来基于数字微镜器件(DMD)调制的SIM(DMD-SIM)发展迅速,它利用DMD高刷新率、高光通量、偏振不敏感的优势,克服了传统器件如物理光栅和液晶空间光调制器在调控速度上的缺点。本综述首先介绍了SIM超分辨和光切片的基本原理,然后着重阐述了DMD-SIM通过光投影和光干涉产生结构光照明及调控光场的方法,对当前的DMD-SIM研究进展进行了归纳评述,总结了DMD-SIM的优缺点,最后对DMD-SIM面临的挑战和发展趋势进行了展望。
光学显微 结构光照明显微 超分辨 光切片 数字微镜器件 
激光与光电子学进展
2024, 61(6): 0618001
Author Affiliations
Abstract
1 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
2 Key Laboratory of Opto-electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
3 College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
4 Department of Bioengineering and COMSET, Clemson University, Clemson SC 29634, US
Wide-field linear structured illumination microscopy (LSIM) extends resolution beyond the diffraction limit by moving unresolvable high-frequency information into the passband of the microscopy in the form of moiré fringes. However, due to the diffraction limit, the spatial frequency of the structured illumination pattern cannot be larger than the microscopy cutoff frequency, which results in a twofold resolution improvement over wide-field microscopes. This Letter presents a novel approach in point-scanning LSIM, aimed at achieving higher-resolution improvement by combining stimulated emission depletion (STED) with point-scanning structured illumination microscopy (psSIM) (STED-psSIM). The according structured illumination pattern whose frequency exceeds the microscopy cutoff frequency is produced by scanning the focus of the sinusoidally modulated excitation beam of STED microscopy. The experimental results showed a 1.58-fold resolution improvement over conventional STED microscopy with the same depletion laser power.
stimulated emission depletion structured illumination microscopy superresolution microscopy 
Chinese Optics Letters
2024, 22(3): 031701
吴寅 1,2梁永 1,2张洁 2李辉 1,2,*
作者单位
摘要
1 中国科学技术大学生物医学工程学院(苏州),生命科学与医学部,江苏 苏州 215163
2 中国科学院苏州生物医学工程技术研究所,江苏省医用光学重点实验室,江苏 苏州 215163
人类表皮生长因子受体-2(HER2)的异常扩增会导致癌细胞的过度增殖和肿瘤恶化。在采用常规光学显微成像技术检测扩增水平较高的乳腺癌细胞HER2基因时,荧光原位杂交探针的荧光信号斑点呈簇状分布,难以精确计数。应用结构光照明超分辨成像技术对HER2基因荧光原位杂交的病理切片进行成像,从而分辨距离较近的荧光探针。通过大视场扫描成像和图像拼接,对数百个细胞进行成像和统计分析,提高了高扩增水平病理切片上HER2探针计数的准确性。
乳腺癌病理诊断 荧光原位杂交 结构光照明超分辨成像 图像拼接 
激光与光电子学进展
2024, 61(4): 0411009
戎路 1,2,*刘乂铭 1宁冉 3,4赵洁 1,2[ ... ]王大勇 1,2,**
作者单位
摘要
1 北京工业大学理学部物理与光电工程系,北京 100124
2 北京市精密测控技术与仪器工程技术研究中心,北京 100124
3 深圳大学物理与光电子工程学院,广东 深圳 518000
4 深圳市微纳光子信息技术重点实验室,广东 深圳 518000
太赫兹波作为一种穿透性强、具有非电离性和惧水性的电磁波,可以穿透多种非金属、非极性介质材料。太赫兹计算层析成像技术基于傅里叶中心切片定理和直线传播模型,通过记录不同投影角度下的强度数据,采用滤波反投影等重建算法获得样品三维吸收系数分布和内外部结构信息分布。随着太赫兹成像器件的不断发展和应用场景的拓展,已发展出多种照明模式、成像光路和重建算法,并已在文物保护、骨密度测量和无损检测领域开展了应用探索。概述太赫兹计算层析技术的基本原理,并从提高重建质量、分辨率和采集效率三方面具体介绍太赫兹计算层析成像技术的最新研究。
太赫兹成像 计算层析 三维成像 照明光场调控 
激光与光电子学进展
2024, 61(2): 0211012
郜鹏 1,2,3,*王文健 1,2,3,**卓可群 1,2,3刘欣 1,2,3[ ... ]郑娟娟 1,2,3
作者单位
摘要
1 西安电子科技大学物理学院,陕西 西安 710171
2 复杂环境光电感知教育部重点实验室,陕西 西安 710171
3 陕西省高校功能纳米材料工程研究中心,陕西 西安 710171
定量相衬显微可以在无荧光标记的前提下实现对透明样品的高衬度、定量化相位成像,对活细胞及其动态过程观测具有重要意义。然而,传统的定量相衬显微需要记录3幅相移图像才能获得样品定量的相位图像,耗时较长。提出一种基于双通道卷积神经网络的定量相衬显微相位重建方法。该方法可以利用2幅相移图像获得样品的定量相位图像,将传统定量相衬显微的成像速度提高了1.5倍,重建速度提高了1个数量级。实验中,利用COS7细胞的数据对网络进行训练,该网络可以成功实现对3T3细胞的定量相位成像,说明该网络具有一定的泛化能力。该方法有望为活细胞以及亚细胞器互作网络的动态观测提供有力手段。
定量相位成像 部分相干照明 深度学习 卷积神经网络 
激光与光电子学进展
2024, 61(2): 0211011

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!