半导体光电, 2017, 38 (1): 79, 网络出版: 2017-03-29   

不同波长紫外光信号在高空大气通信中的性能分析

Analysis of Communication Performance of UV Signals in High Atmosphere with Different Wavelengths
作者单位
1 空军工程大学 信息与导航学院, 西安 710077
2 空军大连通信士官学校, 辽宁 大连 116600
3 中国人民解放军93010部队, 沈阳 110016
摘要
为分析高空紫外光通信性能, 建立了高空太阳辐射分布模型; 研究了不同波长紫外光的高空散射系数和吸收系数; 考虑太阳辐射的背景光和接收端散粒噪声, 对紫外光直视与非直视链路的损耗和信噪比进行了仿真分析。结果表明: 在高空30km以下, 由太阳辐射产生的背景光远小于接收端散粒噪声; 在7km的高度上280nm的信号光可实现距离为5km、速率为10Mb/s的直视通信和距离1km、速率50kb/s、收发端仰角为20°的非直视通信。直视与非直视通信可以通过选择波长在“日盲区”两端的信号来减小臭氧对紫外光的吸收作用, 提高信噪比; 非直视通信还可以选择“日盲区”波长短的信号来增强散射效应, 改善通信性能。
Abstract
In order to analyze the performance of UV communication in high atmosphere channel, the solar irradiation distribution model was built. Scattering coefficients and absorption coefficients of UV light with different wavelength were studied. Considering the noise caused by solar irradiation and the receiver, both path loss and SNR were simulated respectively in the condition of UV communication line-of-sight (LOS) link and non-line-of-sight (NLOS) link. The results show that the noise caused by solar irradiation is much less than that of the receiver below 30km in the air. At the wavelength of 280nm and height of 7km, it can realize communication at a range of 5km and rate of 10Mb/s by LOS link, and a range of 1km, rate of 50kb/s and elevations on the transceiver of 20° by NLOS link. A signal with the wavelength at either end of ‘solar-blind’ can decrease ozone absorption and increase SNR, which is suitable for both LOS and NLOS link. In addition, a signal with short wavelength can strengthen scattering, which is of benefit to realize NLOS communication.
参考文献

[1] Drost R J,Moore T J, Sadler B M. Ultraviolet scattering propagation modeling: analysis of path loss versus range[J]. Optical Society of America, 2013, 30 (11): 2259-2265.

[2] Elshimy M A,Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries[J]. Optical Society of America, 2011, 28(3): 420-428.

[3] Wang Peng,Xu Zhengyuan. Characteristics of ultraviolet scattering and turbulent channels[J]. Opt. Lett., 2013, 38(15): 2773-2775.

[4] Chena Gang,Xu Zhengyuan, Sadler B M. Experimental demonstration of non-line-of-sight ultraviolet communication channel characteristics[J]. Proc. SPIE, 2011, 7814: 781407-1-781407-8.

[5] 强若馨,赵尚弘. 不同大气高度紫外光单次散射链路模型研究[J]. 半导体光电, 2013, 34 (6): 1027-1031.

    Qiang Ruoxin,Zhao Shanghong. Study on ultraviolet single scattering link model at different atmosphere height[J]. Semiconductor Optoelectronics, 2013,34(6):1027-1031.

[6] Zuo Yong,Xiao Houfei, Zhang Wenbo, et al. Approximate performance study of non-line-of-sight ultraviolet communication links in noncoplanar geometry[C]// 7th Inter. ICST Conf. on Commun. and Networking, 2012: 296-300.

[7] Zuo Yong,Xiao Houfei, Wu Jian, et al. Effect of atmospheric turbulence on non-line-of-sight ultraviolet communications[C]// IEEE 23rd Inter. Symp. on Personal, Indoor and Mobile Radio Commun., 2012: 1682-1685.

[8] Wu Menglong,Han Dahai, Zhang Xiang, et al.Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems[J]. Opt. Express, 2014 , 22(5): 5422-5430.

[9] Zhao Taifei,Zhang Aili, Xue Rongli. Multi-channel access technology based on wavelength division multiplexing in wireless UV communication mesh network[J]. Optoelectron. Lett., 2013, 9 (3): 0208-0212.

[10] Li Cheng,Zhang Min, Chen Xue, et al.. Experimental performance evaluation of mobile sensor and communication system based on ultraviolet[C]// 24th Chinese Control and Decision Conf., 2012: 218-220.

[11] Zhang Hailiang,Yin Hongwei, Jia Honghui, et al. The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume[J]. Opt. Commun., 2012, 285: 1771-1776.

[12] 王荣阳,刘福浩, 李向阳. 紫外光通信误码率测试系统设计[J]. 半导体光电, 2013, 33(5): 707-710.

    Wang Rongyang,Liu Fuhao, Li Xiangyang. Design of BER measurement system for UV communication[J]. Semiconductor Optoelectronics, 2013, 33 (5): 707-710.

[13] E.J.麦卡特尼.大气光学分子和粒子散射[M]. 潘乃先,等译. 北京: 科学出版社, 1988: 210-216.

    McCartney E J. Optics of The Atmosphere Scattering by Molecules and Particles[M]. Pan Naixian, et al. (translation). Beijing: Science Press,1988: 210-216.

[14] Amnon Yariv,Pochi Yeh. 光子学——现代通信光电子学[M]. 陈鹤鸣, 译. 北京: 电子工业出版社, 2014: 451-453.

    Amnon Yariv,Pochi Yeh. Optical Electronics in Modern Communications[M]. Chen Heming, (translation). Beijing: Publishing House of Electronics Industry, 2014: 451-453.

[15] Wang Zijun,Chen Shengbo, Yang Chunyan, et al. A method for retrieving vertical ozone profiles from limb scattered measurements[J]. Acta Meteorologica Sinica, 2011, 25(5): 689-668.

[16] 黄富祥,徐永福, 王维和. 臭氧吸收参数数据库精度检验和验证[J]. 气象学报, 2006, 64(2): 229-235.

    Huang Fuxiang,Xu Yongfu, Wang Weihe. Checking and validation the absorption coefficients of ozone in the UV band[J]. Acta Meteorologica Sinica, 2006, 64(2): 229-235.

[17] 王淑荣,李福田, 宋克非. 地外太阳紫外光谱测量[J]. 光学精密工程, 2010,18(6): 1271-1277.

    Wang Shurong,Li Futian, Song Kefei. Measurement of extraterrestrial solar ultraviolet spectrum[J]. Optics and Precision Engin., 2010, 18(6): 1271-1277.

李金良, 赵辉, 曲光, 郭威武, 朱子行. 不同波长紫外光信号在高空大气通信中的性能分析[J]. 半导体光电, 2017, 38(1): 79. LI Jinliang, ZHAO Hui, Qu Guang, GUO Weiwu, ZHU Zihang. Analysis of Communication Performance of UV Signals in High Atmosphere with Different Wavelengths[J]. Semiconductor Optoelectronics, 2017, 38(1): 79.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!