中国激光, 2017, 44 (1): 0102012, 网络出版: 2017-01-10   

不同晶面单晶硅在飞秒激光作用下的行为特性 下载: 1435次

Behavior Characteristics of Different Crystal Surfaces of Monocrystal Silicon Under Femtosecond Laser Irradiation
作者单位
北京工业大学激光工程研究院高功率激光先进制造实验室, 北京 100124
引用该论文

张欣, 黄婷, 肖荣诗. 不同晶面单晶硅在飞秒激光作用下的行为特性[J]. 中国激光, 2017, 44(1): 0102012.

Zhang Xin, Huang Ting, Xiao Rongshi. Behavior Characteristics of Different Crystal Surfaces of Monocrystal Silicon Under Femtosecond Laser Irradiation[J]. Chinese Journal of Lasers, 2017, 44(1): 0102012.

参考文献

[1] Fan P, Bai B, Long J. et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 5988-5994.

[2] Long J, Pan L, Fan P. et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J]. Langmuir, 2016, 32(4): 1065-1072.

[3] Joglekar A P, Liu H, Meyhöfer E. et al. Optics at critical intensity: Applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861.

[4] Kawata S, Sun H B, Tanaka T. et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[5] Wu D, Wu S Z, Niu L G. et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 2010, 97(3): 031109.

[6] Xia H, Wang J, Tian Y. et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 2010, 22(29): 3204-3207.

[7] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[8] Cheng J, Liu C, Shang S. et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 2013, 46: 88-102.

[9] Sun L, Qin Y, Cao Q. et al. Novel photocatalytic antibacterial activity of TiO2 microspheres exposing 100% reactive {111} facets[J]. Chemical Communications, 2011, 47(47): 12628-12630.

[10] Wang H, Gao J, Guo T. et al. Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties[J]. Chemical Communications, 2012, 48(2): 275-277.

[11] KwakD, KimJ, ParkS, et al. Why is (111) silicon a better mechanical material for MEMS: Torsion case[C]. ASME 2003 International Mechanical Engineering Congress and Exposition, 2003: 259- 264.

[12] Hua X S, Zhang Y J, Wang H W. The effect of texture unit shape on silicon surface on the absorption properties[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 258-262.

[13] Pal P, Sato K. A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching[J]. Micro and Nano Systems Letters, 2015, 3(1): 1-42.

[14] Römer G, Huis A J, Meijer J. et al. On the formation of laser induced self-organizing nanostructures[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 201-204.

[15] Crawford T H R, Botton G A, Haugen H K. Crystalline orientation effects on conical structure formation in femtosecond laser irradiation of silicon and germanium[J]. Applied Surface Science, 2010, 256(6): 1749-1755.

[16] Sedao X, Maurice C, Garrelie F. et al. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation[J]. Applied Physics Letters, 2014, 104(17): 171605.

[17] KrügerJ, KautekW. Ultrashort pulse laser interaction with dielectrics and polymers[M]. Berlin: Springer Berlin Heidelberg, 2004: 247- 290.

[18] Wright S I, Nowell M M. EBSD image quality mapping[J]. Microscopy and Microanalysis, 2006, 12(1): 72-84.

[19] Gimpel T, Höger I, Falk F. et al. Electron backscatter diffraction on femtosecond laser sulfur hyperdoped silicon[J]. Applied Physics Letters, 2012, 101(11): 111911.

[20] Kaiser A, Rethfeld B, Vicanek M. et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 2000, 61(17): 11437.

[21] Kiani A, Venkatakrishnan K, Tan B. Micro/nano scale amorphization of silicon by femtosecond laser irradiation[J]. Optics Express, 2009, 17(19): 16518-16526.

[22] Jia J, Li M, Thompson C V. Amorphization of silicon by femtosecond laser pulses[J]. Applied Physics Letters, 2004, 84(16): 3205-3207.

[23] Kiani A, Venkatakrishnan K, Tan B. Direct laser writing of amorphous silicon on Si-substrate induced by high repetition femtosecond pulses[J]. Journal of Applied Physics, 2010, 108(7): 074907.

[24] SaringP, Baumann AL, KontermannS, et al. Characterization of electrical contacts on silicon (100) after ablation and sulfur doping by femtosecond laser pulses[C]. Solid State Phenomena, 2014, 205: 358- 363.

张欣, 黄婷, 肖荣诗. 不同晶面单晶硅在飞秒激光作用下的行为特性[J]. 中国激光, 2017, 44(1): 0102012. Zhang Xin, Huang Ting, Xiao Rongshi. Behavior Characteristics of Different Crystal Surfaces of Monocrystal Silicon Under Femtosecond Laser Irradiation[J]. Chinese Journal of Lasers, 2017, 44(1): 0102012.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!