中国激光, 2019, 46 (3): 0311006, 网络出版: 2019-05-09   

Fe 3+对植酸封端的金纳米颗粒SERS性能的影响 下载: 545次

Influence of Fe 3+ on SERS Performance of Phytic Acid Terminated Gold Nanoparticles
作者单位
上海工程技术大学材料工程学院, 上海 201620
引用该论文

张垒, 张霞, 柳晓钰, 翁仪瑾, 刘肖. Fe 3+对植酸封端的金纳米颗粒SERS性能的影响 [J]. 中国激光, 2019, 46(3): 0311006.

Lei Zhang, Xia Zhang, Xiaoyu Liu, Yijin Weng, Xiao Liu. Influence of Fe 3+ on SERS Performance of Phytic Acid Terminated Gold Nanoparticles [J]. Chinese Journal of Lasers, 2019, 46(3): 0311006.

参考文献

[1] 杨玥, 翁国军, 赵婧, 等. 纸质表面增强拉曼散射基底的制备及其应用进展[J]. 中国激光, 2018, 45(3): 0307011.

    Yang Y, Weng G J, Zhao J, et al. Progresses of preparation and applications of paper-based surface-enhanced Raman scattering substrate[J]. Chinese Journal of Lasers, 2018, 45(3): 0307011.

[2] 梁淑妍, 刘红梅, 穆云云, 等. 金纳米团簇组装的表面增强拉曼散射基底[J]. 光谱学与光谱分析, 2018, 38(1): 87-92.

    Liang S Y, Liu H M, Mu Y Y, et al. Gold nanocluster assembled nanoislands for surface-enhanced Raman scattering application[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 87-92.

[3] Laor U, Schatz G C. The role of surface roughness in surface enhanced Raman spectroscopy (SERS): the importance of multiple plasmon resonances[J]. Chemical Physics Letters, 1981, 82(3): 566-570.

[4] Zong C, Xu M X, Xu L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 2018, 118(10): 4946-4980.

[5] Ilkhani H, Hughes T, Li J, et al. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA[J]. Biosensors and Bioelectronics, 2016, 80: 257-264.

[6] Liu K, Bai Y C, Zhang L, et al. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis[J]. Nano Letters, 2016, 16(6): 3675-3681.

[7] 李梦华. 金银双金属SERS基底的制备及其在食品检测中的应用[D]. 上海: 上海师范大学, 2016.

    Li MH. Preparation of gold and silver bimetallic SERS substrate and its application in food detection[D]. Shanghai: Shanghai Normal University, 2016.

[8] 汤坤. 银-二氧化硅纳米复合物的合成及其在表面增强拉曼光谱中的应用[D]. 武汉: 华中农业大学, 2016.

    TangK. The synthesis of silver-silica nanocomposites and their applications in surface-enhanced Raman spectroscopy[D]. Wuhan: Huazhong Agricultural University, 2016.

[9] Futamata M, Yu Y Y, Yanatori T, et al. Closely adjacent Ag nanoparticles formed by cationic dyes in solution generating enormous SERS enhancement[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7502-7508.

[10] Wang J F, Wu X Z, Wang C W, et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 19958-19967.

[11] Sivashanmugan K, Lee H, Syu C H, et al. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 287-291.

[12] Nagy-Simon T, Tatar A S, Craciun A M, et al. Antibody conjugated, Raman tagged hollow gold-silver nanospheres for specific targeting and multimodal Dark Field/ SERS/ Two Photon-FLIM imaging of CD19(+) B lymphoblasts[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21155-21168.

[13] 贾慧颖. 银纳米粒子的制备、表征及其表面增强拉曼散射活性研究[D]. 吉林: 吉林大学, 2006.

    Jia HY. Synthesis,characterization of SERS active silver nanoparticles[D]. Jilin: Jilin University, 2006.

[14] 许丽梅, 康靖, 曾勇明, 等. SERS技术应用于食品中罗丹明B的快速检测[J]. 食品工业科技, 2017, 38(24): 238-242, 247.

    Xu L M, Kang J, Zeng Y M, et al. Rapid detection of Rhodamine B in raw paprika and other food based on SERS technique[J]. Science and Technology of Food Industry, 2017, 38(24): 238-242, 247.

[15] Jalani G, Cerruti M. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes[J]. Nanoscale, 2015, 7(22): 9990-9997.

[16] Hou T, Liu Y Y, Xu L, et al. Au dotted magnetic graphene sheets for sensitive detection of thiocyanate[J]. Sensors and Actuators B: Chemical, 2017, 241: 376-382.

[17] Guo X Y, Fu Y C, Fu S Y, et al. Improving SERS activity of inositol hexaphosphate capped silver nanoparticles: Fe 3+ as a switcher [J]. Inorganic Chemistry, 2014, 53(14): 7227-7232.

[18] Wang N, Yang H F, Zhu X, et al. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate[J]. Nanotechnology, 2009, 20(31): 315603.

[19] 何鑫, 陈云霞, 赵修建, 等. 各向异性银纳米颗粒在玻璃表面的沉积[J]. 武汉理工大学学报, 2007, 29(S1): 52-55.

    HeX, Chen YX, Zhao XJ, et al.Deposition anisotropic silver nanoparticles on conventional glass surface[ C]. Journal of Wuhan University of Technology, 2007, 29( S1): 52- 55.

[20] 徐媛媛. 表面各向异性和形状对纳米颗粒磁性质影响的研究[D]. 沈阳: 东北大学, 2007.

    Xu YY. Study on the influence of surface anisotropy and shape on the magnetic properties of nanoparticles[D]. Shenyang: Northeastern University, 2007.

[21] 周妮. 结构各向异性金纳米颗粒的制备及其SERS特性研究[D]. 南京: 南京邮电大学, 2015.

    ZhouN. Synthesis of anisotropic gold nanoparticles and their surface-eenhanced Raman scattering properties[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015.

[22] 邹敏, 董金凤, 李学丰. 晶种法制备各向异性金纳米颗粒[ C]. 中国化学会胶体与界面化学会议, 2015: 207- 208.

    ZouM, Dong JF, Li XF. Preparation of anisotropic gold nanoparticles using seed-mediated[ C]. Chinese Society of Colloid and Interface Chemistry Conference, 2015: 207- 208.

[23] 朱孟真, 张海良, 贾红辉, 等. 基于Mie散射理论的紫外光散射相函数研究[J]. 光散射学报, 2007, 19(3): 225-229.

    Zhu M Z, Zhang H L, Jia H H, et al. Study of ultraviolet scattering phase function based on Mie scattering theory[J]. The Journal of Light Scattering, 2007, 19(3): 225-229.

[24] 郭露芳, 沈建琪. 相对折射率对前向散射粒度测试的影响[J]. 中国激光, 2016, 43(3): 0308004.

    Guo L F, Shen J Q. Dependence of forward light scattering particle size measurement on the relative refractive index[J]. Chinese Journal of Lasers, 2016, 43(3): 0308004.

[25] 吴德操, 魏彪, 汤戈, 等. 基于Mie散射的水体紫外-可见光谱浊度干扰补偿[J]. 光学学报, 2017, 37(2): 0230007.

    Wu D C, Wei B, Tang G, et al. Turbidity disturbance compensation for UV-VIS spectrum of waterbody based on Mie scattering[J]. Acta Optica Sinica, 2017, 37(2): 0230007.

[26] Gao X N, Wu Y, Huang Y P, et al. A novel porous flower-like HA/Ag nanocomposite: one pot preparation and excellent performances as both SERS nanosensor and catalyst[J]. Microporous and Mesoporous Materials, 2018, 258: 1-7.

[27] 潘多海, 苗润才, 李秀英, 等. SERS活性表面荧光增强或淬灭的机制研究[J]. 物理学报, 1989, 38(6): 965-972.

    Pan D H, Miao R C, Li X Y, et al. Fluorescence enhancement or quenching of molecule at SERS active surfaces[J]. Acta Physica Sinica, 1989, 38(6): 965-972.

张垒, 张霞, 柳晓钰, 翁仪瑾, 刘肖. Fe 3+对植酸封端的金纳米颗粒SERS性能的影响 [J]. 中国激光, 2019, 46(3): 0311006. Lei Zhang, Xia Zhang, Xiaoyu Liu, Yijin Weng, Xiao Liu. Influence of Fe 3+ on SERS Performance of Phytic Acid Terminated Gold Nanoparticles [J]. Chinese Journal of Lasers, 2019, 46(3): 0311006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!