红外与激光工程, 2019, 48 (12): 1213004, 网络出版: 2020-02-11   

TOF相机实时高精度深度误差补偿方法

TOF camera real-time high precision depth error compensation method
作者单位
1 西安科技大学 计算机科学与技术学院, 陕西 西安 710054
2 西安科技大学 机械工程学院, 陕西 西安 710054
引用该论文

李占利, 周康, 牟琦, 李洪安. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程, 2019, 48(12): 1213004.

Li Zhanli, Zhou Kang, Mu Qi, Li Hong′an. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering, 2019, 48(12): 1213004.

参考文献

[1] 李诗锐, 李琪, 李海洋, 等. 基于Kinect v2的实时精确三维重建系统[J]. 软件学报, 2016, 27(10): 2519-2529.

    Li Shirui, Li Qi, Li Haiyang, et al. Real-time accurate 3D reconstruction based on Kinect v2[J]. Journal of Software, 2016, 27(10): 2519-2529. (in Chinese)

[2] Péter Fankhauser, Bloesch M, Rodriguez D, et al. Kinect v2 for mobile robot navigation: Evaluation and modeling[C]// International Conference on Advanced Robotics, IEEE, 2015.

[3] 李兴东, 李满天, 郭伟, 等.TOF激光相机六自由度位姿变换估计[J]. 红外与激光工程, 2015, 44(7): 2231-2238.

    Li Xingdong, Li Mantian, Guo Wei, et al. Estimating 6 DOF pose transformation of a TOF laser camera[J]. Infrared and Laser Engineering, 2015, 44(7): 2231-2238. (in Chinese)

[4] Gilles M, Fayad H, Miglierini P, et al. EP-1511: Patient positioning using surface images from Time-of-Flight (ToF) cameras[J]. Radiotherapy and Oncology, 2015,115: S823.

[5] 卜禹铭, 杜小平, 曾朝阳, 等.无扫描激光三维成像雷达研究进展及趋势分析[J]. 中国光学, 2018, 11(5): 711-727.

    Bu Yuming, Du Xiaoping, Zeng Zhaoyang, et al.Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 2018, 11(5): 711-727. (in Chinese)

[6] Hansard M, Lee S, Choi O, et al. Time of Flight Cameras: Principles, Methods, and Applications[M].Heidelbery Germany: Springer Publishing Company, Incorporated, 2012.

[7] Lachat E, Hélène Macher, Landes T, et al. Assessment and calibration of a RGB-D camera (Kinect v2 sensor) towards a potential use for close-range 3D modeling[J]. Remote Sensing, 2015, 10(7): 13070-13097.

[8] 李庆辉, 李艾华, 郑勇,等.利用几何特征和时序注意递归网络的动作识别[J]. 光学 精密工程, 2018, 26(10): 2584-2591.

    Li Qinghui, Li Aihua, Zheng Yong, et al. Action recognition using geometric features and recurrent temporal attention network[J]. Optics and Precision Engineering, 2018, 26(10): 2584-2591. (in Chinese)

[9] 刘志强, 尹建芹.基于Kinect数据主成分分析的人体动作识别[J]. 光学 精密工程, 2015, 23(10): 702-711.

    Liu Zhiqiang, Yin Jianqin. Human action recognition based on Kinect data principal component analysis[J].Optics and Precision Engineering, 2015, 23(10): 702-711. (in Chinese)

[10] Lachat E, Macher H, Mittet M A, et al. First experiences with Kinect V2 sensor for close range 3D modelling[C]//ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-5/W4(5): 93-100.

[11] 张旭, 邵双运, 祝祥, 等.光学三维扫描仪光强传递函数的测量和校正[J]. 中国光学, 2018, 11(1): 123-130.

    Zhang Xu, Shao Shuangyun, Zhu Xiang, et al.Measurement and calibration of the intensity transform function of the optical 3D profilometry system[J].Chinese Optics, 2018, 11(1): 123-130. (in Chinese)

[12] 卢纯青, 宋玉志, 武延鹏, 等. 基于TOF计算成像的三维信息获取与误差分析[J]. 红外与激光工程, 2018, 47(10):1041004.

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. 3D information acquisition and error analysis based on TOF computational imaging[J]. Infrared and Laser Engineering, 2018, 47(10): 1041004. (in Chinese)

[13] Corti A, Giancola S, Mainetti G, et al. A metrological characterization of the Kinect V2 time-of-flight camera[J]. Robotics & Autonomous Systems, 2016, 75(PB):584-594.

[14] Butkiewicz T. Low-cost coastal mapping using Kinect v2 time-of-flight cameras[C]//Oceans. IEEE, 2015.

[15] Yang L, Zhang L, Dong H, et al. Evaluating and improving the depth accuracy of Kinect for windows v2[J]. IEEE Sensors Journal, 2015, 15(8): 4275-4285.

[16] Pagliari D, Menna F, Roncella R, et al. Kinect fusion improvement using depth camera calibration[J]. International Archives of the Photogrammetry Remote Sensing & S, 2014, XL-5(5): 479-485.

[17] 王乐, 罗宇, 王海宽, 等. ToF深度相机测量误差校正模型[J]. 系统仿真学报, 2017, 29(10): 2323-2329.

    Wang Le, Luo Yu, Wang Haikuan, et al. Measurement error correction model of ToF depth camera[J]. Journal of System Simulation, 2017, 29(10): 2323-2329. (in Chinese)

[18] 丁津津. TOF三维摄像机的误差分析及补偿方法研究[D].合肥: 合肥工业大学, 2011.

    Ding Jinjin. Error analysis and compensation research of the TOF 3D camera[D]. Heifei: Hefei University of Technology, 2011. (in Chinese)

[19] Shim H, Adelsberger R, Kim J D, et al. Time-of-flight sensor and color camera calibration for multi-view acquisition[J]. The Visual Computer, 2012, 28(12):1139-1151.

[20] Niu Z Q, Liu K. Pixel-by-pixel depth measurement error compensation method for Kinect[J]. Journal of Optoelectronics·Laser, 2016, 27(11): 1169-1175.

[21] 张洪, 郑梓均, 孙春龙. Kinect深度测量的系统误差补偿研究[J]. 仪表技术与传感器, 2015(12): 120-125.

    Zhang Hong, Zheng Zijun, Sun Chunlong. Research on system error compensation in depth measurement of kinect[J]. Instrument Technique and Sensor, 2015(12): 120-25. (in Chinese)

[22] Jung J, Lee J Y, Jeong Y, et al. Time-of-flight sensor calibration for a color and depth camera pair[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(7): 1501-1513.

[23] Hamed Sarbolandi, Damien Lefloch, Andreas Kolb. Kinect range sensing: structured-light versus time-of-flight kinect[J]. Computer Vision and Image Understanding, 2015, 139: 1-20.

李占利, 周康, 牟琦, 李洪安. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程, 2019, 48(12): 1213004. Li Zhanli, Zhou Kang, Mu Qi, Li Hong′an. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering, 2019, 48(12): 1213004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!