红外与激光工程, 2019, 48 (12): 1213004, 网络出版: 2020-02-11   

TOF相机实时高精度深度误差补偿方法

TOF camera real-time high precision depth error compensation method
作者单位
1 西安科技大学 计算机科学与技术学院, 陕西 西安 710054
2 西安科技大学 机械工程学院, 陕西 西安 710054
摘要
TOF(Time-Of-Flight)相机获取的深度值存在着边角畸变和精度偏移, 目前主要是通过误差查找表或曲线拟合等技术进行误差补偿, 计算量大且补偿速度慢。通过对TOF相机在不同距离的深度误差分布规律的分析, 提出了一种实时、高精度的误差补偿方法。该方法利用TOF深度图像的旋转对称性以及误差分布的特性, 简化了误差补偿模型、降低参数数量级, 有效提升了补偿的精度和速度。将算法应用于基于TOF原理的Kinect v2深度传感器进行深度补偿, 使得有效距离内平面度误差下降到0.63 mm内, 平均误差下降到0.704 0 mm内, 单帧数据补偿时间在90 ms内。由于该算法仅基于光径差进行补偿, 因此适用于所有TOF原理的相机。实验结果表明, 该算法能够快速有效减少TOF相机的深度误差, 适用于实时、高精度的大视场三维重建。
Abstract
When using Time-Of-Flight(TOF) camera to obtain depth values, corner distortion and precision offset often occur. At present, the main methods to compensate depth errors are based on the techniques like error look-up table or curve fitting, which has a large amount of calculation resulting in slow compensation speed. By analyzing the depth error distribution law of TOF camera at different distances, a real-time and high-precision error compensation method was proposed. The error compensation model was simplifed by using the rotational symmetry of TOF depth image and the characteristics of error distribution. The order of magnitude of the parameters was reduced, and the accuracy and speed of compensation process were effectively improved. The proposed algorithm was applied to Kinect v2 depth sensor for depth compensation, the flatness error within the effective distance dropped to 0.63 mm, the average error dropped to 0.704 0 mm, and the single frame data compensation time was less than 90 ms. Since the algorithm compensates only based on the optical path difference, it is suitable for all TOF principle cameras. The results of experiments show that the proposed algorithm can quickly and effectively reduce the depth error of TOF camera, and is suitable for real-time, high-precision three-dimensional reconstruction of large field of view.
参考文献

[1] 李诗锐, 李琪, 李海洋, 等. 基于Kinect v2的实时精确三维重建系统[J]. 软件学报, 2016, 27(10): 2519-2529.

    Li Shirui, Li Qi, Li Haiyang, et al. Real-time accurate 3D reconstruction based on Kinect v2[J]. Journal of Software, 2016, 27(10): 2519-2529. (in Chinese)

[2] Péter Fankhauser, Bloesch M, Rodriguez D, et al. Kinect v2 for mobile robot navigation: Evaluation and modeling[C]// International Conference on Advanced Robotics, IEEE, 2015.

[3] 李兴东, 李满天, 郭伟, 等.TOF激光相机六自由度位姿变换估计[J]. 红外与激光工程, 2015, 44(7): 2231-2238.

    Li Xingdong, Li Mantian, Guo Wei, et al. Estimating 6 DOF pose transformation of a TOF laser camera[J]. Infrared and Laser Engineering, 2015, 44(7): 2231-2238. (in Chinese)

[4] Gilles M, Fayad H, Miglierini P, et al. EP-1511: Patient positioning using surface images from Time-of-Flight (ToF) cameras[J]. Radiotherapy and Oncology, 2015,115: S823.

[5] 卜禹铭, 杜小平, 曾朝阳, 等.无扫描激光三维成像雷达研究进展及趋势分析[J]. 中国光学, 2018, 11(5): 711-727.

    Bu Yuming, Du Xiaoping, Zeng Zhaoyang, et al.Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 2018, 11(5): 711-727. (in Chinese)

[6] Hansard M, Lee S, Choi O, et al. Time of Flight Cameras: Principles, Methods, and Applications[M].Heidelbery Germany: Springer Publishing Company, Incorporated, 2012.

[7] Lachat E, Hélène Macher, Landes T, et al. Assessment and calibration of a RGB-D camera (Kinect v2 sensor) towards a potential use for close-range 3D modeling[J]. Remote Sensing, 2015, 10(7): 13070-13097.

[8] 李庆辉, 李艾华, 郑勇,等.利用几何特征和时序注意递归网络的动作识别[J]. 光学 精密工程, 2018, 26(10): 2584-2591.

    Li Qinghui, Li Aihua, Zheng Yong, et al. Action recognition using geometric features and recurrent temporal attention network[J]. Optics and Precision Engineering, 2018, 26(10): 2584-2591. (in Chinese)

[9] 刘志强, 尹建芹.基于Kinect数据主成分分析的人体动作识别[J]. 光学 精密工程, 2015, 23(10): 702-711.

    Liu Zhiqiang, Yin Jianqin. Human action recognition based on Kinect data principal component analysis[J].Optics and Precision Engineering, 2015, 23(10): 702-711. (in Chinese)

[10] Lachat E, Macher H, Mittet M A, et al. First experiences with Kinect V2 sensor for close range 3D modelling[C]//ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-5/W4(5): 93-100.

[11] 张旭, 邵双运, 祝祥, 等.光学三维扫描仪光强传递函数的测量和校正[J]. 中国光学, 2018, 11(1): 123-130.

    Zhang Xu, Shao Shuangyun, Zhu Xiang, et al.Measurement and calibration of the intensity transform function of the optical 3D profilometry system[J].Chinese Optics, 2018, 11(1): 123-130. (in Chinese)

[12] 卢纯青, 宋玉志, 武延鹏, 等. 基于TOF计算成像的三维信息获取与误差分析[J]. 红外与激光工程, 2018, 47(10):1041004.

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. 3D information acquisition and error analysis based on TOF computational imaging[J]. Infrared and Laser Engineering, 2018, 47(10): 1041004. (in Chinese)

[13] Corti A, Giancola S, Mainetti G, et al. A metrological characterization of the Kinect V2 time-of-flight camera[J]. Robotics & Autonomous Systems, 2016, 75(PB):584-594.

[14] Butkiewicz T. Low-cost coastal mapping using Kinect v2 time-of-flight cameras[C]//Oceans. IEEE, 2015.

[15] Yang L, Zhang L, Dong H, et al. Evaluating and improving the depth accuracy of Kinect for windows v2[J]. IEEE Sensors Journal, 2015, 15(8): 4275-4285.

[16] Pagliari D, Menna F, Roncella R, et al. Kinect fusion improvement using depth camera calibration[J]. International Archives of the Photogrammetry Remote Sensing & S, 2014, XL-5(5): 479-485.

[17] 王乐, 罗宇, 王海宽, 等. ToF深度相机测量误差校正模型[J]. 系统仿真学报, 2017, 29(10): 2323-2329.

    Wang Le, Luo Yu, Wang Haikuan, et al. Measurement error correction model of ToF depth camera[J]. Journal of System Simulation, 2017, 29(10): 2323-2329. (in Chinese)

[18] 丁津津. TOF三维摄像机的误差分析及补偿方法研究[D].合肥: 合肥工业大学, 2011.

    Ding Jinjin. Error analysis and compensation research of the TOF 3D camera[D]. Heifei: Hefei University of Technology, 2011. (in Chinese)

[19] Shim H, Adelsberger R, Kim J D, et al. Time-of-flight sensor and color camera calibration for multi-view acquisition[J]. The Visual Computer, 2012, 28(12):1139-1151.

[20] Niu Z Q, Liu K. Pixel-by-pixel depth measurement error compensation method for Kinect[J]. Journal of Optoelectronics·Laser, 2016, 27(11): 1169-1175.

[21] 张洪, 郑梓均, 孙春龙. Kinect深度测量的系统误差补偿研究[J]. 仪表技术与传感器, 2015(12): 120-125.

    Zhang Hong, Zheng Zijun, Sun Chunlong. Research on system error compensation in depth measurement of kinect[J]. Instrument Technique and Sensor, 2015(12): 120-25. (in Chinese)

[22] Jung J, Lee J Y, Jeong Y, et al. Time-of-flight sensor calibration for a color and depth camera pair[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(7): 1501-1513.

[23] Hamed Sarbolandi, Damien Lefloch, Andreas Kolb. Kinect range sensing: structured-light versus time-of-flight kinect[J]. Computer Vision and Image Understanding, 2015, 139: 1-20.

李占利, 周康, 牟琦, 李洪安. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程, 2019, 48(12): 1213004. Li Zhanli, Zhou Kang, Mu Qi, Li Hong′an. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering, 2019, 48(12): 1213004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!