发光学报, 2019, 40 (2): 143, 网络出版: 2019-03-11  

纳米材料的控制合成及其上转换发光性质

Controllable Synthesis and Upconversion Luminescence Properties of Yb3+/Er3+ Codoped (MLaFn)x (M=0,K;n=3,4;x=1,1.5) of Nanomaterials
作者单位
1 内蒙古师范大学 化学与环境科学学院, 内蒙古 呼和浩特 010022
2 内蒙古师范大学 内蒙古功能材料物理与化学重点实验室, 内蒙古 呼和浩特 010022
3 吉林大学 集成光电子学国家重点联合实验室, 吉林 长春 130012
摘要
采用水热与溶剂热结合的方法, 在乙二醇-正己醇体系中, 通过调节KF与RE(RE=La, Yb, Er)的量比、反应温度和反应时间实现了由LaF3(六角相)到KLaF4(立方相、六角相)晶型的控制合成。借助透射电子显微镜(TEM)和X射线粉末衍射(XRD)对样品的结构和微观形貌进行表征。结果表明, 当KF/RE比例为2.25时, 制备的样品为片状的六角相LaF3纳米颗粒; 当KF/RE比例为3.00时, 得到具有近似球形的立方相KLaF4纳米颗粒; 当KF/RE比例为4.25时, 得到了六角相(KLaF4)1.5纳米颗粒。上转换发射光谱显示: 所有的样品在近红外光(980 nm)激发下, 均有3个明显的发射峰, 在522 nm、544 nm处分别对应于Er3+的4S3/2, 2H11/2→4I15/2能级跃迁, 655 nm处属于Er3+的4F9/2→4I15/2能级跃迁。
Abstract
Upconversion nanocrystals(UPCNs) from hexagonal phase LaF3 (β) to cubic phase KLaF4(α) or hexagonal phase(KLaF4)1.5(β) were prepared by simply tuning the molar ratio of KF to RE(RE=La, Yb, Er), reaction temperature and reaction time in ethlene glycol(EG) and 1-hexanol (HA) mixed solvents via a facile hydro/solvothermal method. The β-LaF3 to α-KLaF4 or β-(KLaF4)1.5transformation process was studied by X-ray diffraction(XRD), fluorescence spectrophotometer with an external 980 nm single-wavelength diode laser and transmission electron microscopy(TEM) techniques. The results indicate that the hexagonal phase of LaF3 nanosheet was synthesized when the ratio of KF/RE was 2.25. With the ratio of KF/RE increased to 3.00, the approximate spherical cubic phase of KLaF4 was obtained. The cubic phase of KLaF4 completely transforms into the hexagonal phase of (KLaF4)1.5 when the ratio of KF/RE was 4.25. The red and green emission are corresponding to the transitions 4S3/2, 2H11/2→4I15/2(Green) at 522 nm and 544 nm, 4F9/2→ 4I15/2(Red) at 655 nm of Er3+ ions, respectively.
参考文献

[1] AUZEL F. Upconversion and anti-Stokes processes with f and d Ions in solids [J]. Chem. Rev., 2004,104(1): 139-174.

[2] DOWNING E,HESSELINK L,RALSTON J,et al.. A three-color,solid-state,three-dimensional display [J]. Science, 1996,273(5279): 1185-1189.

[3] SANDROCK T,SCHEIFE H,HEUMANN E,et al.. High-power continuous-wave upconversion fiber laser at room temperature [J]. Opt. Lett., 1997,22(11): 808-810.

[4] OSTROWSKI A D,CHAN E M,GARGAS D J,et al.. Controlled synthesis and single-particle imaging of bright,sub-10 nm lanthanide-doped upconverting nanocrystals [J]. ACS Nano, 2012,6(3): 2686-2692.

[5] YI G S,LU H C,ZHAO S Y,et al.. Synthesis,characterization,and biological application of size-controlled nanocrystalline NaYF4∶Yb, Er infrared-to-visible up-conversion phosphors [J]. Nano Lett., 2004,4(11): 2191-2196.

[6] VAN DE RIJKE F,ZIJLMANS H,LI S,et al.. Up-converting phosphor reporters for nucleic acid microarrays [J]. Nat. Biotechnol., 2001,19(3): 273-276.

[7] VENNERBERG D,LIN Z Q. Upconversion nanocrystals: synthesis, properties, assembly and applications [J]. Sci. Adv. Mater., 2011,3(1): 26-40.

[8] ZHANG C,ZHOU H P,LIAO L Y,et al.. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout [J]. Adv. Mater., 2010,22(5): 633-637.

[9] KIM W J,NYK M,PRASAD P N. Color-coded multilayer photopatterned microstructures using lanthanide(Ⅲ) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security [J]. Nanotechnology, 2009,20(18): 185301-1-7.

[10] ZHANG G,DONG H,WANG D,et al.. Investigations on multi-photon emissions of Nd3+-sensitized core/shell nanoparticles [J]. J. Rare Earths, 2017,35(1): 1-6.

[11] WANG X,ZHUANG J,PENG Q,et al.. A general strategy for nanocrystal synthesis [J]. Nature, 2005,437(7055): 121-124.

[12] LIU Y X,WANG D S,SHI J X,et al.. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals [J]. Angew. Chem., 2013,125(16): 4462-4465.

[13] YU X F,LI M,XIE M Y,et al.. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging [J]. Nano Res., 2010,3(1): 51-60.

[14] LIU D M,XU X X,DU Y,et al.. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals [J]. Nat. Commun., 2016,7: 10254-1-8.

[15] CARGNELLO M,GORDON T R,MURRAY C B. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals [J]. Chem. Rev., 2014,114(19): 9319-9345.

[16] DING M Y,ZHU F,MA D Y,et al.. KF-mediated controlled-synthesis of potassium ytterbium fluorides (doped with Er3+) with phase-dependent upconversion luminescence [J]. CrystEngComm, 2015,17(37): 7182-7190.

[17] NIE L,SHEN Y X,ZHANG X,et al.. Selective synthesis of LaF3 and NaLaF4 nanocrystals via lanthanide ion doping [J]. J. Mater. Chem. C, 2017,5(35): 9188-9193.

[18] 李洋洋,李大光,张丹,等. 小尺寸NaLuF4∶Yb3+/Tm3+纳米晶的生长及上转换发光 [J]. 发光学报, 2018,39(6): 764-770.

    LI Y Y,LI D G,ZHANG D,et al.. Growth process and upconversion luminescence of NaLuF4∶Yb3+/Tm3+ nanocrystals [J]. Chin. J. Lumin., 2018,39(6): 764-770. (in Chinese)

[19] WANG F,LIU X G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation [J]. Acc. Chem. Res., 2014,47(4): 1378-1385.

[20] SUN L D,WANG Y F,YAN C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra [J]. Acc. Chem. Res., 2014,47(4): 1001-1009.

[21] DONG H,SUN L D,YAN C H. Basic understanding of the lanthanide related upconversion emissions [J]. Nanoscale, 2013,5(13): 5703-5714.

[22] ZHANG Y W,SUN X,SI R,et al.. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor [J]. J. Am. Chem. Soc., 2005,127(10): 3260-3261.

[23] BAI X,LI D,LIU Q,et al.. Concentration-controlled emission in LaF3∶Yb3+/Tm3+ nanocrystals: switching from UV to NIR regions [J]. J. Mater. Chem., 2012,22(47): 24698-24704.

[24] SUYVER J F,GRIMM J,VAN VEEN M K,et al.. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ [J]. J. Lumin., 2006,117(1): 1-12.

[25] GROEN C P,OSKAM A,KOVCS A. Theoretical study of mixed MLaX4(M=Na, K, Cs; X=F, Cl, Br, I) rare earth/alkali metal halide complexes [J]. Inorg. Chem., 2003,42(3): 851-858.

[26] AHMAD S,PRAKASH G V,NAGARAJAN R. Hexagonally ordered KLaF4 host: phase-controlled synthesis and luminescence studies [J]. Inorg. Chem., 2012,51(23): 12748-12754.

[27] RENERO-LECUNA C,MARTN-RODRGUEZ R,VALIENTE R,et al.. Origin of the high upconversion green luminescence efficiency in β-NaYF4∶2%Er3+,20%Yb3+ [J]. Chem. Mater., 2011,23(15): 3442-3448.

[28] TYAGI N,REDDY A A,NAGARAJAN R. KLaF4∶Er an efficient upconversion phosphor [J]. Opt. Mater., 2010,33(1): 42-47.

[29] DAS S,REDDY A A,AHMAD S,et al.. Synthesis and optical characterization of strong red light emitting KLaF4∶Eu3+ nanophosphors [J]. Chem. Phys. Lett., 2011,508(1-3): 117-120.

[30] DU Y P,ZHANG Y W,SUN L D,et al.. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors [J]. Dalton. Trans., 2009,(40): 8574-8581.

[31] LIU R,TU D T,LIU Y S,et al.. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals [J]. Nanoscale, 2012,4(15): 4485-4491.

[32] 赖文彬,周海芳,程树英,等. Er3+/Yb3+共掺KLaF4纳米晶的制备和上转换发光 [J]. 发光学报, 2013,34(10): 1259-1263.

    LAI W B,ZHOU H F,CHENG S Y,et al.. Preparation and upconversion luminescence of Er3+/Yb3+ codoped KLaF4 nanocrystals [J]. Chin. J. Lumin., 2013,34(10): 1259-1263. (in Chinese)

[33] MAI H X,ZHANG Y W,SI R,et al.. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006,128(19): 6426-6436.

[34] 王猛. 稀土上转换发光纳米材料的合成及应用 [M]. 沈阳: 东北大学出版社, 2015.

    WANG M. Rare Earth Doped Upconversion Luminescent Nanomaterials: Synthesis and Applications [M]. Shenyang: Dongbei University Press, 2015. (in Chinese)

刘媛媛, 德格吉呼, 王仙. 纳米材料的控制合成及其上转换发光性质[J]. 发光学报, 2019, 40(2): 143. LIU Yuan-yuan, DE Ge-ji-hu, WANG Xian. Controllable Synthesis and Upconversion Luminescence Properties of Yb3+/Er3+ Codoped (MLaFn)x (M=0,K;n=3,4;x=1,1.5) of Nanomaterials[J]. Chinese Journal of Luminescence, 2019, 40(2): 143.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!