光电工程, 2015, 42 (8): 41, 网络出版: 2015-09-08   

热辐射偏振建模与仿真

Modeling and Simulation of Thermal Emission Polarization
作者单位
合肥工业大学计算机与信息学院, 合肥 230009
摘要
针对传统热辐射偏振模型忽略物体表面微观分布的问题, 进行红外热辐射偏振特性建模仿真研究, 基于微面元偏振双向反射分布函数 (pBRDF), 结合微观结构分布情况建立红外热辐射偏振度模型。利用红外热辐射发射率的平行和垂直分量的和分之差来表示偏振度, 根据基尔霍夫定律和微面元双向反射分布函数 (BRDF)得到发射率与半球空间反射率之间的关系, 最后将微面元 BRDF偏振化计算定向半球空间反射率, 继而得到定向发射率矩阵并计算偏振度。仿真结果表明, 模型仿真得到的红外热辐射偏振度与发射角的关系曲线与实际测量结果基本保持一致, 并且与传统红外热辐射偏振模型仿真结果相比较更符合实测值, 在表面粗糙度较大的情况下, 能够更准确地反映物体的红外热辐射偏振特性。
Abstract
Traditional thermal emission polarization model ignores the microscopic distribution, and taking this into consideration to expand modeling and simulation research of infrared thermal emission polarization characteristics. Model of the degree of polarization of the infrared thermal emission is built based on the microfacet polarized Bidirectional Reflectance Distribution Function (pBRDF) and the microstructure distribution. Utilizing the difference between the parallel and perpendicular components of the emissivity of the infrared thermal emission divided by the sum of them represent the degree of polarization. And the relationship between emissivity and hemispherical reflectance is obtained according to the Kirchhoff's law and the microfacet BRDF. Polarizing the microfacet BRDF to calculate the directional hemispherical reflectance and then directional emissivity matrix, and last to get the degree of polarization. The simulation results show that the curves of the relationship between the polarization and the emission angle of the infrared thermal emission are consistent with the actual measurement results, and compared with the simulation results of traditional thermal emission polarization model, is closer to the measured value, especially in the case of the surface roughness is larger, can more accurately reflect the infrared thermal emission polarization characteristics.
参考文献

[1] 林跃春, 郭金海, 雷阳. 浅析偏振光遥感的应用 [J].测绘与空间地理信息, 2011, 34(2): 147-148. LIN Yuechun, GUO Jinhai, LEI Yang. Discussion on the Application of Polarization Remote Sensing [J]. Geomatics & Spatial Information Technology, 2011, 34(2): 147-148.

[2] 张朝阳, 程海峰, 陈朝辉, 等. 偏振遥感的研究现状及发展趋势 [J].激光与红外, 2008, 37(12): 1237-1240. ZHANG Chaoyang, CHENG Haifeng, CHEN Zhaohui, et al. The Present Research and Developing Trend of Polarization Remote Sensing [J]. Laser & Infrared, 2008, 37(12): 1237-1240.

[3] Oscar Sandus. A Review of Emission Polarization [J]. Applied Optics(S0003-6935), 1965, 4(12): 1634-1642.

[4] Jordan D L, Lewis G. Measurement of the effect of surface roughness on the polarization state of thermally emitted radiation [J]. Optics Letters(S0146-9592), 1994, 19(10): 692-694.

[5] Jordan D L, Lewis G D, Jakeman E. Emission polarization of roughened glass and aluminum surfaces [J]. Applied Optics(S0003-6935), 1996, 35(19): 3583-3590.

[6] Wolff L B, Lundberg A, Tang R. Image understanding from thermal emission polarization [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998: 625-631.

[7] Gurton K P, Dahmani R. Effect of surface roughness and complex indices of refraction on polarized thermal emission [J]. Applied Optics(S0003-6935), 2005, 44(26): 5361-5367.

[8] 汪震, 乔延利, 洪津, 等. 金属板热红外偏振的方向特性研究 [J].光电工程, 2007, 34(6): 49-52. WANG Zhen, QIAO Yanli, HONG Jin, et al. Thermal emission polarization of metal plate at different viewing angles [J]. Opto-Electronic Engineering, 2007, 34(6): 49-52.

[9] 牛继勇, 李范鸣, 马利祥. 目标红外偏振探测原理及特性分析 [J].红外技术, 2014, 36(3): 215-220. NIU Jiyong, LI Fanming, MA Lixiang. The Principle and Characteristics Analysis of IR Polarization Detection [J]. Infrared Technology, 2014, 36(3): 215-220.

[10] 牛继勇, 李范鸣, 马利祥. 热红外自发辐射偏振特性分析以及验证实验 [J].光电工程, 2014, 41(2): 88-93. NIU Jiyong, LI Fanming, MA Lixiang. The Theoretical Analysis of Thermal Infrared Emission Polarization and Experimental Verification [J]. Opto-Electronic Engineering, 2014, 41(2): 88-93.

[11] Gurton K P, Dahmani R, Videen G. Measured degree of infrared polarization for a variety of thermal emitting surfaces [R]. Army Research Lab Adelphi Md, 2004: 1.

[12] 马帅, 白廷柱, 曹峰梅, 等. 基于双向反射分布函数模型的红外偏振仿真 [J].光学学报, 2009, 29(12): 3357-3361. MA Shuai, BAI Tingzhu, CAO Fengmei, et al. Infrared Polarimetric Scene Simulation Based on BidirectionalReflectance Distribution Function Model [J]. Acta Optica Sinica, 2009, 29(12): 3357-3361.

[13] Gartley M G, Brown S D, Goodenough A D, et al. Polarimetric scene modeling in the thermal infrared [C]// Optical Engineering Applications International Society for Optics and Photonics, 2007: 66820C-66820C-12.

[14] 袁艳, 孙成明, 张修宝. 空间目标表面材料光谱双向反射分布函数测量与建模 [J].物理学报, 2010, 59(3): 2097-2103. YUAN Yan, SUN Chengming, ZHANG Xiubao. Space target surface material spectral bidirectional reflectance distribution function measurements and modeling [J]. Acta Physica Sinica, 2010, 59(3): 2097-2103.

[15] 李新, 郑小兵, 寻丽娜, 等. 多角度测量系统实现室外 BRDF测量 [J].光电工程, 2008, 35(1): 66-70. LI Xin, ZHENG Xiaobing, XUN Lina, et al. Realization of Field BRDF Acquisition by Multiangular Measurement System [J]. Opto-Electronic Engineering, 2008, 35(1): 66-70.

[16] Richard G Priest, Thomas A Germer. Polarimetric BRDF in the microfacet model: theory and measurement [C]// Naval Research Laboratory, Published in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169-181.

[17] Jason P M eyers, John R Schott, Scott D Brown. Incorporation of polarization into the DIRSIG synthetic image generation model [J]. Proceedings of SPIE(S0277-786X), 2002, 4816: 132-143.

[18] Torrance K E, Sparrow E M. Theory for off-specular reflection from roughened surfaces [J]. Journal of the Optical Society of America(S0030-3941), 1967, 57(9): 1105-1112.

汤倩, 张仁斌, 凌晋江, 叶秋. 热辐射偏振建模与仿真[J]. 光电工程, 2015, 42(8): 41. TANG Qian, ZHANG Renbin, LING Jinjiang, YE Qiu. Modeling and Simulation of Thermal Emission Polarization[J]. Opto-Electronic Engineering, 2015, 42(8): 41.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!