中国激光, 2017, 44 (6): 0602003, 网络出版: 2017-06-08   

高功率连续激光辐照CFRP层合板热力破坏效应多尺度分析模型

Multi-Scale Analysis Model of Thermal-Mechanical Damage Effect in High-Power Continuous-Wave Laser Irradiation of CFRP Laminates
作者单位
1 中国科学院力学研究所流固耦合系统力学重点实验室, 北京 100190
2 中国科学院大学工程科学学院, 北京 100049
3 中国科学院宁波工业技术研究院先进制造技术研究所, 浙江 宁波 315201
摘要
建立了能够反映高功率连续激光辐照碳纤维增强复合材料(CFRP)层合板时材料发生烧蚀、热解与层间开裂等热力损伤效应的多尺度分析模型。从细观尺度分别建立了纤维和基体的热解动力学方程, 通过热重分析获得热解动力学参数, 进而得到CFRP层合板宏观的热物与力学性能参数。通过内聚力模型建立了激光辐照引起层间开裂的分析模型, 提出并建立了热解和层间开裂效应阻碍能量传递的热阻模型。将多尺度模型获得的热-力学性能参数与热力耦合数值模型相结合, 模拟了高功率连续激光引起的烧蚀、热解及层间开裂行为, 模拟结果与实验结果吻合较好。
Abstract
A multi-scale analysis model which can reflect thermal-mechanical damage effects, such as ablation, pyrolysis and delamination within layers in the high-power continuous-wave laser irradiation of carbon fiber reinforced polymer (CFRP) laminates is built. The pyrolysis kinetic equations of fibers and matrices are derived from the meso-scale analysis, and the pyrolysis kinetic parameters are obtained from the thermo-gravimetric analysis, thereafter the macroscopic thermal-physical and mechanical property parameters of CFRP laminates are obtained. Based on the cohesive model, an analysis model is built to describe the laser induced delamination behavior within layers. Meanwhile, a thermal-resistance model is also proposed and built to describe the attenuation of thermal energy due to pyrolysis and delamination within layers. By combining the thermal-mechanical property parameters obtained from the multi-scale model with the thermal-mechanical numerical model, the ablation, pyrolysis and delamination within layers of CFRP laminates irradiated by high-power continuous-wave lasers can be simulated. The numerical results show good agreement with the experimental data.
参考文献

[1] Dimitrienko Y. Thermomechanical behaviour of composite materials and structures under high temperatures: 1. Materials[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(5): 453-461.

[2] Dimitrienko Y. Thermomechanical behaviour of composite materials and structures under high temperatures: 2. Structures[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(5): 463-471.

[3] Gibson A G, Wu Y S, Evans J T, et al. Laminate theory analysis of composites under load in fire[J]. J Compos Mater, 2006, 40(7): 639-658.

[4] Sorathia U, Lyon R, Gann R, et al. Materials and fire threat[J]. Fire Technol, 1996, 32(3): 8-15.

[5] Zhang J, Rowland J. Damage modeling of carbon-fiber reinforced polymer composite pin-joints at extreme temperatures[J]. Compos Struct, 2012, 94(8): 2314-2325.

[6] Dimitrienko Y. Modelling of the mechanical properties of composite materials at high temperatures: 2. Properties of unidirectional composites[J]. Appl Compos Mater, 1997, 4(4): 239-261.

[7] Dimitrienko Y. Modelling of the mechanical properties of composite materials at high temperatures: 1. Matrix and fibers[J]. Appl Compos Mater, 1997, 4(4): 219-237.

[8] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9): 1969-1972.

    Chen Minsun, Jiang Houman, Liu Zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(9): 1969-1972.

[9] 宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1): 435-477.

    Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477.

[10] Gibson A G, Wright P N H, Wu Y S, et al. The integrity of polymer composites during and after fire[J]. J Compos Mater, 2004, 38(15): 1283-1307.

[11] Chippendale R D, Golosnoy I O, Lewin P L. Numerical modelling of thermal decomposition processes and associated damage in carbon fibre composites[J]. J Phys D: Appl Phys, 2014, 47(38): 385301.

[12] Pelletier D,Borggaard J, Hetú J F. A continuous sensitivity equation method for conduction and phase change problems[C]. Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit, 2000: 0881.

[13] Mi Y, Crisfield M A, Davies G A O, et al. Progressive delamination using interface elements[J]. J Compos Mater, 1998, 32(14): 1246-1272.

[14] 张龙霞, 朱晓冰, 李风雨, 等. 材料表面缺陷对激光热损伤的影响[J]. 光学学报, 2016, 36(9): 0914001.

    Zhang Longxia, Zhu Xiaobing, Li Fengyu, et al. Laser-induced thermal damage influenced by surface defects of materials[J]. Acta Optica Sinica, 2016, 36(9): 0914001.

[15] 欧长劲, 秦才宝, 姜献峰, 等. 非垂直激光切割能量分布研究[J]. 激光与光电子学进展, 2017, 54(4): 041407.

    Ou Changjin, Qin Caibao, Jiang Xianfeng, et al. The energy distribution of non-vertical laser cutting[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041407.

赵伟娜, 黄亿辉, 宋宏伟, 黄晨光. 高功率连续激光辐照CFRP层合板热力破坏效应多尺度分析模型[J]. 中国激光, 2017, 44(6): 0602003. Zhao Weina, Huang Yihui, Song Hongwei, Huang Chenguang. Multi-Scale Analysis Model of Thermal-Mechanical Damage Effect in High-Power Continuous-Wave Laser Irradiation of CFRP Laminates[J]. Chinese Journal of Lasers, 2017, 44(6): 0602003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!