光学学报, 2017, 37 (6): 0622002, 网络出版: 2017-06-08   

圆形吸收体复合抛物聚光器面形模型研究及仿真验证 下载: 519次

Surface Shape Model Research for Compound Parabolic Concentrators with Circular Absorber and Its Simulation Verification
段鹏飞 1,2,*桂特特 1,2陈飞 1,2杨春曦 2别玉 1,2
作者单位
1 昆明理工大学太阳能工程研究所, 云南 昆明 650500
2 昆明理工大学化学工程学院, 云南 昆明 650500
摘要
固定光口聚光太阳能系统具有宽带集热温度、无需跟踪装置、无机械运动、易于集成构建、运行状态稳定等优点, 因此针对圆形吸收体太阳能复合抛物聚光器(CPC)关键部件面形结构进行了研究。理论构建了圆形吸收体CPC面形结构模型, 并获得其解析解。运用光学设计软件TracePro验证所构建理论模型的光学特性。利用圆形吸收体CPC面形光学特性, 构建了CPC耦合太阳能集热系统, 并建立其光学特性计算方法。针对所构建系统的光学特性进行了数值计算, 结果表明所构建系统的采光量较真空管太阳能集热系统有所提高, 平均提高比例为34.57%。
Abstract
The fixed solar concentrating system exhibits such advantages as wide heat-collecting temperature band, no tracking device, no mechanical movement, easy integration, and stable operation. Therefore, we study the critical component surface shape structure of the solar compound parabolic concentrators (CPC) with circular absorber. A theoretical model of surface shape structure of CPC with circular absorber is established and the analytic solution of the model is obtained. The optical characteristics of the theoretical model is validated by the optical design software TracePro. Meanwhile, a novel solar collector system with CPC is designed, and the calculation method for optical characteristics is established by the optical characteristics of surface shape of CPC with circular absorber. The numerical calculation is conducted by the optical characteristics of the designed system. The results show that the solar radiation collected by the solar collector with CPC is higher than that of the solar collector with evacuated tubes, and the average ratio is 34.57%.
参考文献

[1] Al-Sulaiman F A. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles[J]. Energy Conversion Management, 2014, 77(1): 441-449.

[2] Tripathi B, Yadav P, Rathod S, et al. Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India[J]. Energy Conversion Management, 2014, 80(4): 97-102.

[3] 赵玉兰, 张 红, 战栋栋, 等. CPC热管式真空管集热器的集热效率研究[J]. 太阳能学报, 2007, 28(9): 1022-1025.

    Zhao Yulan, Zhang Hong, Zhan Dongdong, et al. Study on thermal efficiency of CPC heat pipe evacuated tubular collectors[J]. Acta Energiae Solaris Sinica, 2007, 28(9): 1022-1025.

[4] 陈 飞, 李 明, 许成木, 等. 腔体吸收器位置对太阳能槽式系统光热转换性能的影响[J]. 光学学报, 2014, 34(9): 0922003.

    Chen Fei, Li Ming, Xu Chengmu, et al. Influence of photo-thermal conversion characteristics by the position of cavity absorber in parabolic trough solar concentrator[J]. Acta Optica Sinica, 2014, 34(9): 0922003.

[5] Winston R. Principles of solar concentrators of a novel design[J]. Solar Energy, 1974, 16(2): 89-95.

[6] Rabl A. Optical and thermal properties of compound parabolic concentrators[J]. Solar Energy, 1976, 18(6): 497-511.

[7] Ortabasit U, Buehl W M. An internal cusp reflector for an evacuated tubular heat pipe solar thermal collector[J]. Solar Energy, 1980, 25(1): 67-68.

[8] Ronnelid M, Karlsson B.Experimental investigation of heat losses from low-concentrating non-imaging concentrators[J]. Solar Energy, 1996, 57(8): 93-109.

[9] Liu Z H, Tao G D, Lu L, et al. A novel all-glass evacuated tubular solar steam generator with simplified CPC[J]. Energy Conversion and Management, 2014, 86(10): 175-185.

[10] Antonelli M, Francesconi M,Di Marco P, et al. Analysis of heat transfer in different CPC solar collectors: A CFD approach[J]. Applied Thermal Engineering, 2016, 101(5): 479-489.

[11] Tang F, Li G H, Tang R S. Design and optical performance of CPC based compound plane concentrators[J]. Renewable Energy, 2016, 95(9): 140-151.

[12] Wang J, Yu L, Jiang C, et al. Optical analysis of solar collector with new V-shaped CPC[J]. Solar Energy, 2016, 135(10): 780-785.

[13] 王云峰, 季 杰, 李 明, 等. 多平面镜线性组合太阳能聚光器的设计和聚光特性[J]. 光学学报, 2016, 36(4): 0422002.

    Wang Yunfeng, Ji Jie, Li Ming, et al. Performance analysis and design of multi-plane mirrors linear combination solar concentrator[J]. Acta Optica Sinica, 2016, 36(4): 0422002.

[14] 杨光辉, 刘友强, 尧 舜, 等. 聚光模组二次光学元件优化设计与研究[J]. 光学学报, 2015, 35(3): 0322006.

    Yang Guanghui, Liu Youqiang, Yao Shun, et al. Optimized design and research of secondary optics in concentrating photovoltaic module[J]. Acta Optica Sinica, 2015, 35(3): 0322006.

[15] 李 臻, 史月艳, 王毓琰, 等. 具有镜面反射和漫反射的CPC光学分析[J]. 太阳能学报, 2003, 24(1): 58-63.

    Li Zhen, Shi Yueyan, Wang Yuyan, et al. Optical analysis of compound parabolic concentrator[J]. Acta Energiae Solaris Sinica, 2003, 24(1): 58-63.

[16] 余亚梅. 出射角受制约的复合抛物面聚光系统性能研究[D]. 昆明: 云南师范大学, 2015: 11-13.

    Yu Yamei. Studies on performance of CPCs with a restricted exit angle[D]. Kunming: Yunnan Normal University, 2015: 11-13.

[17] 朱 瑞, 卢振武, 刘 华, 等. 基于非成像原理设计的太阳能聚光镜[J]. 光子学报, 2009, 38(9): 2251-2255.

    Zhu Rui, Lu Zhenwu, Liu Hua, et al. The solar concentrator design method based on nonimaging optics[J]. Acta Photonica Sinica, 2009, 38(9): 2251-2255.

[18] Duffie J A, Beckman W A. Solar engineering of thermal process[M]. 4th edition. Hoboken: Wiley, 2013.

[19] 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.

    Meteorological Library of China Meteorological Information Center, Department of Architectural Science and Technology of Tsinghua University. Special meteorological data for architectural environment analysis of China[M]. Beijing: China Building Industry Press, 2005.

[20] 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 西安: 西北工业大学出版社, 2004.

    Zhang Hefei. Solar energy thermal utilization principle and computer simulation[M]. Xi′an: Northwestern Polytechnical University Press, 2004.

[21] 郭廷玮, 刘鉴民. 太阳能的利用[M]. 北京: 科学技术文献出版社, 1987.

    Guo Tingwei, Liu Jianmin. Utilization of solar energy[M]. Beijing: Science and Technology Literature Press, 1987.

[22] 项立成, 赵玉文, 罗运俊. 太阳能的热利用[M]. 北京: 宇航出版社, 1990.

    Xiang Licheng, Zhao Yuwen, Luo Yunjun. Thermal utilization of solar energy[M]. Beijing: Aerospace Press. 1990.

[23] 葛新石, 龚 堡, 陆维德, 等. 太阳能工程原理和应用[M]. 北京: 学术期刊出版社, 1988.

    Ge Xinshi, Gong Bao, Lu Weide, et al. Principle and application of solar energy engineering[M].Beijing: Academic Journal Publishing Press, 1988.

[24] Collares-Pereira M, Rabl A. The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values[J]. Solar Energy, 1979: 22(11): 155-164.

[25] 翟 辉. 采用腔体吸收器的线聚焦太阳能集热器的理论及实验研究[D]. 上海: 上海交通大学, 2009: 34-62.

    Zhai Hui. Theoretical and experimental investigation of linear concentrating solar collector with cavity absorber[D]. Shanghai: Shanghai Jiao Tong University, 2009: 34-62.

[26] He Y L, Xiao J, Cheng Z D, et al. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector[J]. Renewable Energy, 2011, 36(3): 976-985.

段鹏飞, 桂特特, 陈飞, 杨春曦, 别玉. 圆形吸收体复合抛物聚光器面形模型研究及仿真验证[J]. 光学学报, 2017, 37(6): 0622002. Duan Pengfei, Gui Tete, Chen Fei, Yang Chunxi, Bie Yu. Surface Shape Model Research for Compound Parabolic Concentrators with Circular Absorber and Its Simulation Verification[J]. Acta Optica Sinica, 2017, 37(6): 0622002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!