量子电子学报, 2018, 35 (1): 79, 网络出版: 2018-01-30  

温度对电子辐照下聚酰亚胺表面充电的影响

Effect of temperature on surface charging of polyimide under electron irradiation
作者单位
军械工程学院静电与电磁防护研究所, 河北 石家庄 050003
摘要
为了研究温度、等离子体环境变化对航天器表面介质材料充电水平的影响,利用研制的温度可控航天器介质材料表面带电综合实验系统,对聚酰亚胺材料进行了表面充电实验。结果表明:温度不变时, 聚酰亚胺表面充电平衡电位随束流密度的增大逐渐增大;束流密度不变时,聚酰亚胺表面充电平衡电位随温度升高逐渐减小。温度在243~ 363 K范围时,束流密度越大,温度变化对聚酰亚胺表面充电平衡 电位的影响越小;温度在243~ 273 K范围时,束流密度越大,温度变化对聚酰亚胺表面充电平衡电位的影响越大。
Abstract
In order to investigate effect of temperature and plasma environment change on charging level of spacecraft surface dielectric materials, the developed surface charging synthetic experimental system for dielectric materials of spacecraft, which is temperature controllable, is used to carry out surface charging experiment of polyimide materials. Results show that when temperature is constant, the surface charging balance potential of polyimide increases gradually with increasing of beam current density, and when the beam density is constant, it decreases gradually with increasing of temperature. When temperature ranges from 243 K to 363 K, the greater the beam density is, the smaller the effect of temperature change on polyimide surface charging balance potential will be. When the temperature ranges from 243 K to 273 K, the greater the beam density is, the greater the effect of temperature change on polyimide surface charge balance potential will be.
参考文献

[1] Hanna R, Paulmier T, Molinie P, et al. Radiation induced conductivity in space dielectric materials[J]. Journal of Applied Physics, 2014, 115(3): 033713.

[2] Liaw D J, Wang K L, Huang Y C, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974.

[3] Wang Kai, Xiao Fei, Zhan Maosheng. Preparation and atomic oxygen resistance of polyimide/inorganic oxide composite films[J]. Journal of Beijing University of Aeronautics and Astronautics (北京航空航天大学学报), 2012, 38(5): 601-604 (in Chinese).

[4] Hui Qiufang, Yang Chun, Li Huaqiang. Progresses and perspectives of research in the corona resistant performance on inorganic nanoparticles hybrid polyimide film[J]. Journal of Harbin University of Science and Technology (哈尔滨理工大学学报), 2015, 20(1): 20-25 (in Chinese).

[5] Minow J, Parker L. Spacecraft charging in low temperature environments[C]. Aiaa Aerospace Sciences Meeting and Exhibit, 2013: 1-10.

[6] Li Shengtao, Li Guochang, Min Daomin, et al. Influence of radiation electron energy on deep dielectric charging characteristics of low density polyethylene[J]. Acta Physica Sinica (物理学报), 2013, 62(5): 059401 (in Chinese).

[7] Xiao Feng, Yuan Shitao, Huang Zhixiang, et al. Numerical simulation for polymer/fullerene bulk heterojunction solar cells[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(3): 371-377 (in Chinese).

[8] Weber K H. A simple range-energy relation for electrons in the 3 keV TO 3 Mev region[J]. Nuclear Instruments and Methods, 1964, 25(2): 261-264.

[9] Fujii H, Kanja I, Hasegawa T, et al. Surface flashover on printed circuit boards in vacuum under electron beam irradiation[C]. International Symposium on Discharges and Electrical Insulation in Vacuum, IEEE, 2006: 754-757.

[10] Zheng Xiaoquan, Liu Xiaodong, Zhang Yaoqiang, et al. Influence of high electron radiation on electrical characteristic of dielectric materials[C]. Proceedings of the CSEE (中国电机工程学报), 2007, 27(30): 32-37 (in Chinese).

[11] Tang Daotan, Li Detian, Liu Qing, et al. Investigation of surface charge distribution of dielectric under energetic electric beam irradiation[J]. Vacuum and Cryogenics (真空与低温), 2013, 19(2): 82-84 (in Chinese).

[12] Zhang Zhenlong, Quan Ronghui, Yan Xiaojuan, et al. A study on deep dielectric charging on polyimide film under electron beam irradiation[J]. Spacecraft Environment Engineering (航天器环境工程), 2008, 25(1): 22-25 (in Chinese).

[13] Sessler G M, Figueiredo M T, et al. Models of charge transport in electron-beam irradiated insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2): 192-202.

[14] Tatarolu A, Alt1ndal S. The effects of frequency and γ-irradiation on the dielectric properties of MIS type Schottky diodes[J]. Nuclear Inst. and Methods in Physics Research B, 2007, 254(1): 113-117.

[15] Chen Jidan. Dielectric Physics (电介质物理学)[M]. Beijing: Machinery Industry Press, 1982: 50-60 (in Chinese).

[16] Zhang Ziyan. Study on carrier mobility in semiconductor devices[J]. Electronics World (电子世界), 2012, 13: 5-(in Chinese).

[17] Quan Ronghui, Han Jianwei, Huang Jianguo, et al. Modeling analysis of radiation induced conductivity in electrical insulator[J]. Acta Physica Sinica (物理学报), 2007, 5(11): 6642-6647 (in Chinese).

[18] Zhong Lisheng. Engineering Dielectric Physics and Dielectric Phenomena (工程电介质物理与介电现象)[M]. Xi’an: Xi’an Jiaotong University Press, 2013: 132-145 (in Chinese).

[19] Nakano Y, Kojima H, Tsuchiya K, et al. Transient charging characteristics in surface flashover development process due to explosive electron emission in vacuum[J]. Electrical Engineering in Japan, 2015, 193(2): 10-17.

[20] Zhang Z, Wu W, Jiang W, et al. Surface flashover characteristics of modified polyimide under DC voltage in vacuum[C]. IEEE International Conference on the Properties and Applications of Dielectric Materials, 2013: 1-4.

[21] Zhang Zhenjun, Zheng Xiaoquan, Wu Wenbin, et al. DC surface flashover characteristics of polyimide in vacuum at different temperatures[J]. Journal of Xi’an Jiaotong University (西安交通大学学报), 2014, 48(4): 47-51 (in Chinese).

[22] Tu Youping, Tan Rong, Zhang Guifeng, et al. DC electrical characteristics of polyimide at cryogenic temperature in vacuum[J]. Proceedings of the CSEE (中国电机工程学报), 2013, 33(4): 194-200 (in Chinese).

[23] Lu Zhenneng, Bu Xianbiao, Wang Lingbao, et al. Heat transfer enhancement of a new composite adsorbent[J]. Journal of Refrigeration (制冷学报), 2013, 34(3): 31-34 (in Chinese).

蒙志成, 孙永卫, 原青云, 王松, 刘浩, 周立栋. 温度对电子辐照下聚酰亚胺表面充电的影响[J]. 量子电子学报, 2018, 35(1): 79. MENG Zhicheng, SUN Yongwei, YUAN Qingyun, WANG Song, LIU Hao, ZHOU Lidong. Effect of temperature on surface charging of polyimide under electron irradiation[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 79.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!