中国激光, 2015, 42 (3): 0302005, 网络出版: 2015-02-06   

高Q值光学微球腔的温度系数研究

Temperature Coefficient of High-Q Microsphere Cavity
作者单位
1 中北大学仪器科学与动态测试教育部重点实验室, 电子测试技术重点实验室, 山西 太原 030051
2 中国科学院电子学研究所传感技术国家重点实验室, 北京 100190
摘要
光学微球谐振腔由于其具有超高的Q 值及极小的模式体积等优点,在高灵敏度传感和光通信等方面得到了广泛的研究。测试了未封装和封装后微球腔谐振波长随温度的变化,实验结果表明随温度增大,谐振波长线性红移,且线性度高。二者温度系数不同,未封装时为25.6 pm/℃,封装后为4.4 pm/℃,主要原因为紫外胶的负热光系数所致。理论分析了紫外胶的热光效应,通过控制紫外胶厚度可以改变光在紫外胶中的比例,从而调节温度系数。当光在紫外胶中比例为0.1135 时,温度系数变为0,可以抑制温度漂移,实现了温度补偿;该比例继续增大,温度灵敏度提高。低温漂、高灵敏度、微型化拓宽了回音壁模式(WGM)传感器的应用潜力。
Abstract
Optical microsphere resonant cavity has been widely researched in the field of high sensitivity sensor and optical communication because of its high Q value and minimal model volume. Optical resonance wavelength shifts are measured with temperature changes for unpackaged and encapsulated microsphere. Linear dependence of red shift against temperature rise with high linearity is observed. The temperature cofficient is 25.6 pm/℃ for unpackaged microsphere, whereas is 4.4 pm/℃ for encapsulated one, which mostly results from ultraviolet (UV) glue′s negative thermo-optic coefficient. The thermo-optic effect is analyzed based on UV glue. The fraction of light in UV glue can be changed by the thickness of glue, and then, temperature coefficient is also changed. The temperature coefficient decreases to zero when the fraction is 0.1135, which means the depression of temperature drift as well as the realization of thermal compensation. Sensitivity of temperature is improved as fraction increases. Suppressed temperature drift, improved sensitivity, and miniaturization enables broad application potentials of whispering-gallery mode (WGM)-based sensors.
参考文献

[1] 孙贤明, 刘万强, 王海华, 等. 双层微球腔谐振模式研究[J]. 光学学报, 2013, 33(5): 0529001.

    Sun Xianming, Liu Wanqiang, Wang Haihua, et al.. Study on resonant models in two-layers micro-sphere cavity[J]. Acta Optica Sinica, 2013, 33(5): 0529001.

[2] 江俊峰, 张晶, 刘铁根, 等. 微管回音壁谐振模径向模式的影响[J]. 光学学报, 2013, 33(12): 1228003.

    Jiang Junfeng, Zhang Jing, Liu Tiegen, et al.. Effect of radial modes of whispering gallery mode in microtube[J]. Acta Optica Sinica, 2013, 33(12): 1228003.

[3] 杨睿, 於文华, 鲍洋, 等. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究[J]. 物理学报, 2008, 57(10): 6412-6418.

    Yang Rui, Yu Wenhua, Bao Yang, et al.. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity[J]. Acta Physica Sinica, 2008, 57(10): 6412-6418.

[4] 吕社钦, 李超然, 吴越豪, 等. 硫系玻璃微纳光器件研究进展[J]. 激光与光电子学进展, 2014, 51(5): 050001.

    Lü Sheqin, Li Chaoran, Wu Yuehao, et al.. Research progress of micro/nano-optical device based on chalcogenide glass[J]. Laser & Optoelectronics Progress, 2014, 51(5): 050001.

[5] 江斌, 刘安金, 陈微, 等. 立体耦合光子晶体薄板微腔的高Q 值特性研究[J]. 物理学报, 2010, 59(12): 8548-8553.

    Jiang Bin, Liu Anjin, Chen Wei, et al.. The characteristic of the stero-coupling high-Q photonic crystal slab cavity[J]. Acta Physica Sinica, 2010, 59(12): 8548-8553.

[6] 刘毅, 仝晓刚, 于晋龙, 等. 基于热非线性效应的硅基串联双微环谐振腔全光开关[J]. 中国激光, 2013, 40(2): 0205006.

    Liu Yi, Tong Xiaogang, Yu Jinlong, et al.. All-optical switching in silicon-on-insulator serially coupled double-ring resonator based on thermal nonlinear effect[J]. Chinese J Lasers, 2013, 40(2): 0205006.

[7] Monifi F, Ozdemir S. Tunable add-drop filter using an active whispering gallery mode[J]. Appl Phys Lett, 2013, 103(18): 181103.

[8] He L, Ozdemir S K ,Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 2013, 7(1): 60-82.

[9] Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

[10] Zhu J, Ozdemir S K, Xiao Y F, et al.. On- chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator[J]. Nature Photonics, 2010, 4(1): 46-49.

[11] H Ahmadi, H Heidarzadeh, A Taghipour, et al.. Evaluation of single virus detection through optical biosensor based on microsphere resonator[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(14): 3599-3602.

[12] Wang Pengfei, Senthil Murugan, Ganapathy Lee T, et al.. High- Q bismuth- silicate nonlinear glass microsphere resonators[J]. Photonics Journal IEEE, 2012, 4(3): 1013-1020.

[13] 冯翔, 马迎建, 于怀勇, 等. 谐振式微光学陀螺最佳灵敏度调节的研究[J]. 中国激光, 2010, 37(4): 1064-1067.

    Feng Xiang, Ma Yingjian, Yu Huaiyong, et al.. Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope[J]. Chinese J Lasers, 2010, 37(4): 1064-1067.

[14] Yan Yingzhan, Yan Shubin, Ji Zhe, et al.. Humidity and particulate testing of a high-Q microcavity packaging comprising a UVcurable polymer and tapered fiber coupler[J]. Opt Commun, 2012, 285(8): 2189-2194.

[15] Carmon Tal, Yang Lan, Vahala Kerry. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Opt Express, 2004, 12(20): 4742-4750.

[16] Fujiwara M, Noda T, Tanaka A, et al.. Coupling of ultrathin tapered fibers with high-Q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling[J]. Opt Express, 2012, 20(17): 19545-19553.

[17] 王丽, 严英占, 张宇光, 等. 振动噪声对高Q 光学微腔耦合系统的影响及抑制方法[J]. 发光学报, 2011, 32(9): 950-955.

    Wang Li, Yan Yingzhan, Zhang Yuguang, et al.. Effect of vibration noise on the high-Q optical microcavity coupling system and its suppression methods[J]. Chinese Journal of Luminescence, 2011, 32(9): 950-955.

[18] 张宇光, 李鹏, 王丽, 等. 外界环境对微球腔品质因数的影响[J]. 光子学报, 2011, 40(5): 803-806.

    Zhang Yuguang, Li Peng, Wang Li, et al.. Effect of the environment on microsphere Q-factor[J]. Acta Photonica Sinica., 2011, 40(5): 803-806.

[19] Yan Y Z, Zou C L, Yan S B, et al.. Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors[J]. IEEE Photon Technol Lett, 2011, 23(22): 1736-1738.

[20] Hong Seok Choi, Andrea M Armani. Thermal nonlinear effects in hybrid optical microresonators[J]. Appl Phys Lett, 2010, 97(22): 223306.

[21] Li Beibei, Wang Qingyan, Xiao Yunfeng, et al.. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxanecoated microresonator[J]. Appl Phys Lett, 2010, 96(25): 251109.

[22] 李明慧, 马可贞, 骆亮, 等. 耦合间距对绝缘体上硅微环谐振腔的性能影响[J]. 中国激光, 2014, 41(6): 0610001.

    Li Minghui, Ma Kezhen, Luo Liang, et al.. Influence of coupling gap on the performance of silicon-no-insulator microring resonator [J]. Chinese J Lasers, 2014, 41(6): 0610001.

[23] He L, Xiao Y F, Dong C, et al.. Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating[J]. Appl Phys Lett, 2008, 93(20): 201102.

[24] Rose Brian A, Maker Ashley J, Armani Andrea M. Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR[J]. Optical Materials Express, 2012, 2(5): 671-681.

商成龙, 唐军, 皮海龙, 张伟, 谢成峰, 张天恩, 雷龙海, 王明焕, 郭泽彬, 张斌珍, 刘俊, 薛晨阳, 张文栋. 高Q值光学微球腔的温度系数研究[J]. 中国激光, 2015, 42(3): 0302005. Shang Chenglong, Tang Jun, Pi Hailong, Zhang Wei, Xie Chengfeng, Zhang Tian′en, Lei Longhai, Wang Minghuan, Guo Zebin, Zhang Binzhen, Liu Jun, Xue Chenyang, Zhang Wendong. Temperature Coefficient of High-Q Microsphere Cavity[J]. Chinese Journal of Lasers, 2015, 42(3): 0302005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!