光子学报, 2016, 45 (6): 0616001, 网络出版: 2016-07-26   

β-PTCDA的电子结构和光学性质的第一性原理计算

Electronic Structures and Optical Properties of β-PTCDA Based on the First-Principles Investigation
作者单位
西北工业大学 理学院 陕西省光信息技术重点实验室, 西安 710072
摘要
基于密度泛函理论,采用第一性原理赝势平面波方法研究了β-PTCDA分子晶体的能带结构、分波态密度和光学性质,通过分析不同种类原子的不同电子态在不同电子能级中的贡献,获得β-PTCDA分子晶体的光频介电常数、光吸收系数、折射率和能量损失函数等随光频的变化规律.结果表明:β-PTCDA作为一种直接带隙的窄带隙有机半导体,对费米能级贡献较大的电子轨道为苝核的C 2p以及O 2p电子态,即价带顶;对导带底贡献较大的为C 2p及O 2p电子态,包括酸酐C原子;其在光子能量为2~10 eV的区域具有强的光吸收特性,以及明显的双轴各向异性;在介电函数实部ε1(ω)<0的光频区域,β-PTCDA分子晶体具有各向异性电导率,且与能量损失函数相一致.
Abstract
Electronic band structure, Partial Density of States (PDOS) and optical properties of β-phase 3,4,9,10-perylenetetracarboxylic dianhydride (β-PTCDA) molecular crystal were systematically investigated by first-principles calculations based on Density Functional Theory (DFT). The contribution of different type of atoms electronic states to different electronic levels was analyzed, and the frequency dependent optical functions such as the dielectric function, absorption coefficient, refractive index and energy loss function of β-PTCDA molecular crystal that changed with optical frequency were analyzed and obtained. The results showed that β-PTCDA is a direct narrow band gap semiconductor, and the electron orbit making larger contribution to the Fermi level is the O 2p electronic state and C 2p electronic state that come from the perylene core, which are also the top of valence band; what makes larger contribution to the bottom of the conduction band is also the C 2p and O 2p electronic states, including anhydride C atoms; in the photon energy range of 2 to 10 eV, the strong light absorption and obvious biaxial anisotropy can be observed. In the optical frequency range with the real part of dielectric function ε1(ω)<0, β-PTCDA molecular crystal has an anisotropic conductivity, which is consistent with the energy loss function.
参考文献

[1] DEDIU V A, HUESO L E, BERGENTI I, et al. Spin routes in organic semiconductors[J]. Nature Material, 2009, 8(9): 707-716.

[2] LUO Wei, ALLEN M, RAJU V, et al. An organic pigment as a high-performance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(15): 1-5.

[3] HONG Jhen-yong, OU-YANG Kui-hon, WANG Bo-yao, et al. Interfacial spectroscopic characterization of organic/ferromagnet hetero-junction of 3,4,9,10-perylene-teracarboxylic dianhydride-based organic spin valves[J]. Applied Physics Letters, 2014, 104(8): 083301.

[4] RAND B P, BURK D P, FORREST S R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells[J]. Physical Review B, 2007, 75(11): 115327.

[5] WU Wei-ping, LIU Yun-qi, ZHU Dao-ben. π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications[J]. Chemical Society Reviews, 2010, 39(5): 1489-1502.

[6] WUESTEN J, ZIEGLER C, ERTL T. Electron transport in pristine and alkali metal doped perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) thin films [J]. Physical Review B, 2006, 74(12): 125205.

[7] KUMAR B, KAUSHIK B K, NEGI Y S. Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(1): 1-30.

[8] HAN Yu-yan, NING Wei, DU Hai-feng, et al. Preparation, optical and electrical properties of PTCDA nanostructures[J]. Nanoscale, 2015, 7(40): 17116-17121.

[9] BARI瘙塁 B, ZDEMIR H G, TUGLUOGLU N, et al. Optical dispersion and dielectric properties of rubrene organic semiconductor thin film[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(8): 3586-3593.

[10] CHEN B S, LI Y Z, GUAN X Y, et al. First-principles study of structural, elastic and electronic properties of ZrIr alloy[J]. Computational Materials Science, 2015, 105: 66-70.

[11] BANNANI A, BOBISCH C, MLLER R. Ballistic electron microscopy of individual molecules[J]. Science, 2007, 315(5820): 1824-1828.

[12] BRUMME T, NEUCHEVA O A, TOHER C, et al. Dynamical bistability of single-molecule junctions: A combined experimental and theoretical study of PTCDA on Ag (111)[J]. Physical Review B, 2011, 84(11): 115449.

[13] ALONSO M I, GARRIGA M, KARL N, et al. Anisotropic optical properties of single crystalline PTCDA studied by spectroscopic ellipsometry[J]. Organic Electronics, 2002, 3(1): 23-31.

[14] SHARIFZADEH S, BILLER A, KRONIK L, et al. Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles[J]. Physical Review B, 2012, 85(12): 125307.

[15] OGAWA T, KUWAMOTO K, ISODA S, et al. 3, 4: 9, 10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography[J]. Acta Crystallographica Section B: Structural Science, 1999, 55(1): 123-130.

[16] SCHNEIDER M, UMBACH E, SOKOLOWSKI M. Growth-dependent optical properties of 3, 4, 9, 10-perylenetetracarboxylicacid-dianhydride (PTCDA) films on Ag (111)[J]. Chemical Physics, 2006, 325(1): 185-192.

[17] FERGUSON A J, JONES T S. Photophysics of PTCDA and Me-PTCDI thin films: Effects of growth temperature[J]. The Journal of Physical Chemistry B, 2006, 110(13): 6891-6898.

[18] HU Wen-cheng, LIU Yong , LI De-jiang, et al. Structural, anisotropic elastic and electronic properties of Sr–Zn binary system intermetallic compounds: A first-principles study[J]. Computational Materials Science, 2015, 99: 381-389.

[19] YANG Zhi-huai, ZHANG Yun-peng, KANG Cui-ping, et al. The first-principles study of electronic and optical properties of Co-Cr Co-doped rutile TiO2[J]. Acta Photonica Sinica, 2014. 43(1): 0816002.

[20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3867

[21] ZHOU Jian, WANG Qian, SUN Qiang, et al. Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine[J]. Physical Review B, 2010, 81(8): 085442.

[22] YANG Li-ming, RAVINDRAN P, VAJEESTON P, et al. A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties[J]. Microporous and Mesoporous Materials, 2013, 175: 50-58.

[23] ZHAO Zong-yan , LI Zhao-sheng, ZOU Zhi-gang. Electronic structure and optical properties of monoclinic clinobisvanite BiVO 4[J]. Physical Chemistry Chemical Physics, 2011, 13(10): 4746-4753.

[24] CHEN Dong, CHEN Zhe, WU Yi, et al. First-principles investigation of mechanical, electronic and optical properties of Al 3 Sc intermetallic compound under pressure[J]. Computational Materials Science, 2014, 91: 165-172.

[25] GANGILENKA V R, TITOVA L V, SMITH L M, et al. Selective excitation of exciton transitions in PTCDA crystals and films[J]. Physical Review B, 2010, 81(15): 155208.

[26] ZHAI Jin-hui, WAN A-jun, YU Dong-li, et al. Structural, electronic, and optical properties of ordered Si1-xGexC alloys: A first principles study[J]. Journal of Alloys and Compounds, 2015, 632: 629-633.

[27] WANG Qing-bo, ZHOU Cui, CHEN Ling, et al. The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method[J]. Optics Communications, 2014, 312: 185-191.

[28] WENG Hong-ming, YANG Xiao-ping, DONG Jin-ming, et al. Electronic structure and optical properties of the Co-doped anatase TiO 2 studied from first principles[J]. Physical Review B, 2004, 69(12): 125219.

[29] LEI Chen, YANG Zhi-hua, ZHANG Bing-bing, et al. The influence of hydrogen bonding on the nonlinear optical properties of a semiorganic material NH4B [d-(+)-C4H4O5]2·H2O: a theoretical perspective[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 20089-20096.

[30] HUANG Yu-hong, ZHANG Zong-quan, MA Fei, et al. First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes[J]. Computational Materials Science, 2015, 101: 1-7.

[31] KHAN M, XU Jun-na, CHEN Ning, et al. First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2[J]. Journal of Alloys and Compounds, 2012, 513: 539-545.

[32] LI Yan-lu, ZHAO Xian, FAN Wei-liu. Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3552-3557.

[33] CEN Wei-fu, YANG Yin-ye, FAN Meng-hui, et al. Electronic structure and optical properties of orthorhombic P-doped Ca2Si calculated by the first-principles[J]. Acta Photonica Sinica, 2014. 43(8): 0816002.

[34] BULOVIC V, BURROWS P E, FORREST S R, et al. Study of localized and extended excitons in 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) I. Spectroscopic properties of thin films and solutions[J]. Chemical Physics, 1996, 210(1): 1-12.

[35] GUO G Y, CHU K C, WANG Ding-sheng, et al. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations[J]. Physical Review B, 2004, 69(20): 205416.

[36] VRAGOVIC I, SCHOLZ R. Frenkel exciton model of optical absorption and photoluminescence in α-PTCDA[J]. Physical Review B, 2003, 68(15): 155202.

[37] CISOWSKI J, JARZABEK B, JURUSIK J, et al. Direct determination of the refraction index normal dispersion for thin films of 3, 4, 9, 10-perylene tetracarboxylic dianhydride (PTCDA)[J]. Optica Applicata, 2012, 42(1): 181-192.

王雪艳, 郑建邦, 李晓江, 曹崇德. β-PTCDA的电子结构和光学性质的第一性原理计算[J]. 光子学报, 2016, 45(6): 0616001. WANG Xue-yan, ZHENG Jian-bang, LI Xiao-jiang, CAO Chong-de. Electronic Structures and Optical Properties of β-PTCDA Based on the First-Principles Investigation[J]. ACTA PHOTONICA SINICA, 2016, 45(6): 0616001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!