光通信研究, 2016 (5): 46, 网络出版: 2016-12-21  

非均匀折射率分布少模光纤光学特性研究

Optical Properties of Few-Mode Fiber with Non-Uniform Refractive Index
作者单位
南京邮电大学, 南京 210023
摘要
以实现柱矢量光横向选模为目标, 研究了非均匀折射率分布的少模光纤的光学特性。利用有限元法分析了U型折射率分布和弯曲少模光纤的模场特性: 前者结合1 550 nm泵浦光可支持LP11模式并抑制LP01模式; 后者包括二模光纤和四模光纤, 当二者弯曲半径分别为4和2 cm时, 仅支持LP01和LP11模式。结合理论和实验研究了四模和二模FBG(光纤布拉格光栅), 对于二模FBG, 当透射波长位于1 549.79 nm附近时, 可获得呈两瓣分布的LP11模式; 对于四模FBG, 其反射谱峰值波长个数随尾纤弯曲半径的减小而减少。相关结果对于柱矢量光的产生和应用具有重要的理论和实践意义。
Abstract
This paper studies optical properties of few-mode fibers with non-uniform refractive index profile, namely: the U-shape refractive index few-mode fiber and the bending two-mode and four-mode fiber. Finite element method is used to analyze the modal profile of these few-mode fibers. The U-shape refractive index few-mode fiber can support LP11 mode and suppress LP01 mode with a proper pump at 1 550 nm. The two-mode fiber and four-mode fiber can only support LP01 and LP11 mode with a bending radius of 4 cm and 2 cm, respectively. Two-mode and four-mode Fiber Bragg Gratings (FBG) are also studied theoretically and experimentally. As to the two-mode FBG, LP11 mode distribution with a two-lobe shape is measured experimentally near a transmission wavelength of 1 549.79 nm. As to the four-mode FBG, the number of reflection peak wavelength is decreased with a lower bending radius.
参考文献

[1] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Opt Express, 2010, 18(10): 10828-10833.

[2] Chen W, Zhan Q. Realization of evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam[J]. Opt Letters, 2009, 34(6): 722-724.

[3] Meier M, Romano V, Feurer T, et al. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 2007, 86(3): 329-334.

[4] 孙彪, 许立新, 王安廷, 等. 基于FMFBG的全光纤轴对称偏振光束激光器[J]. 量子电子学报, 2014, 31(4): 412-418.

[5] Yan L, Hu G, Xiao J, et al. Characteristic analysis of two-mode fiber Bragg grating[J]. App Physics B, 2014, 117(4): 1221-1228.

[6] Ali M M, Jung Y, Lim K, et al. Characterization of mode coupling in few-mode fiber Bragg gratings with selective mode excitation[J]. IEEE Photon Tech Letters, 2015,27(16):1713-1716.

[7] Zhao Y H, Liu Y Q, Zhang L, et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber[J]. Opt Express ,2016,24(6): 6186-6195.

[8] Sun B, Wang A T, Xu L, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Opt Letters, 2012,37(4): 464-466.

[9] Marcuse D. Curvature loss formula for optical fiber[J]. Journal of Optical Society of America A, 1976,66(3): 216-220.

[10] Wu C, Liu Z Y, Chuang K M, et al. Strong LP01 and LP11 Mutual Coupling Conversion in a Two-Mode Fiber Bragg Grating[J]. IEEE Photonics Journal, 2012, 4(4):1080-1086.

[11] Zhou Y, Wang A T, Gu C, et al. Actively mode-locked all fiber laser withcylindrical vector beam output[J]. Opt Letters , 2016,41(3): 548-550.

李宏业, 万洪丹, 王杜毅, 欧琦, 王子康. 非均匀折射率分布少模光纤光学特性研究[J]. 光通信研究, 2016, 42(5): 46. LI Hong-ye, WAN Hong-dan, WANG Du-yi, OU Qi, WANG Zi-kang. Optical Properties of Few-Mode Fiber with Non-Uniform Refractive Index[J]. Study On Optical Communications, 2016, 42(5): 46.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!