太赫兹科学与电子信息学报, 2018, 16 (1): 1, 网络出版: 2018-07-24   

InP基 RTD太赫兹振荡源及其应用研究进展

Research progress of InP-based resonant tunneling diode terahertz oscillator and its various applications
石向阳 1,2,*苏娟 1,2谭为 1,2张健 1,2
作者单位
1 中国工程物理研究院 a.电子工程研究所,四川绵阳 621999
2 b.微系统与太赫兹研究中心,四川成都 610200
摘要
紧凑和相干的太赫兹源是太赫兹应用的关键组成,共振隧穿二极管 (RTD)是目前振荡频率最高的电子学器件, RTD太赫兹振荡源具有结构紧凑、功耗低、室温工作、有一定输出功率、易集成、覆盖频率较宽等优点。 InP基RTD太赫兹振荡源在 600 GHz左右的频段内输出功率可达百微瓦量级,可见报道的最高振荡频率为 1.92 THz,输出功率 0.4 μW。RTD振荡源的输出功率可以通过偏置电压进行直接调制,使得其在高容量短距离的太赫兹通信系统中具有很大的优势。目前,InP基RTD太赫兹振荡源成为太赫兹源领域的研究热点。
Abstract
Compact and coherent source is a key component for various applications of terahertz(THz) wave. Resonant Tunneling Diode(RTD) has been considered as candidates for THz oscillators under room temperature, because it is the electronic device with the highest oscillating frequency at present. RTD THz oscillation is of great advantages of compact structure, low power consumption, room temperature work, a certain output power, easy integration, wide coverage and so on. The output power of InP-based RTD THz oscillation could reach hundreds micro-watts at around 600 GHz. Up to now, the oscillation frequency is increased up to 1.92 THz with 0.4 μW output power. The output power of RTD oscillators can be directly modulated with bias voltage. Because of this property, the RTD oscillator can be adopted as a compact and simple source for high-capacity wireless communications which is an important application of THz waves. InP-based RTD THz oscillator is attracting more and more research interest currently.
参考文献

[1] HANGYO M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12):120101.

[2] FEIGINOV M,KANAYA H,SUZUKI S,et al. 1.46 THz RTD oscillators with strong back injection from collector[C]// 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves(IRMMW-THz). [S.l.]:IEEE, 2014:1-2.

[3] SUZUKI S,SHIRAISHI M,SHIBAYAMA H,et al. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,19(1):8500108.

[4] MAEKAWA T,KANAYA H,SUZUKI S,et al. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss[J]. Applied Physics Express, 2016,9(2):024101.

[5] LEE J,KIM M,YANG K. A 1.52 THz RTD triple-push oscillator with μW-level output power[J]. IEEE Transactions on Terahertz Science and Technology, 2016,6(2):336-340.

[6] WANG J,ALHARBI K,OFIARE A,et al. High performance resonant tunneling diode oscillators for THz applications[C]// 2015 IEEE Compound Semiconductor Integrated Circuit Symposium(CSICS). [S.l.]:IEEE, 2015:1-4.

[7] Innovative ultra-BROadband ubiquitous wireless communications through terahertz transceivers[EB/OL]. [2016-09-18]. http://ibrow-project.eu/.

[8] ASADA M,SUZUKI S,KISHIMOTO N. Resonant tunneling diodes for sub-terahertz and terahertz oscillators[J]. Japanese Journal of Applied Physics, 2008,47(6R):4375.

[9] ASADA M,SUZUKI S. Resonant tunneling diodes for terahertz sources[R]. Handbook of Terahertz Technologies: Devices and Applications, 2015:151.

[10] BROWN E R,GOODHUE W D,SOLLNER T. Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory[J]. Journal of Applied Physics, 1988,64(3):1519-1529.

[11] BROWN E R,S.DERSTR.M J R,PARKER C D,et al. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes[J]. Applied Physics Letters, 1991,58(20):2291-2293.

[12] SUZUKI S,ASADA M,TERANISHI A,et al. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature[J]. Applied Physics Letters, 2010,97(24):242102.

[13] KANAYA H,SHIBAYAMA H,SOGABE R,et al. Fundamental oscillation up to 1.31 THz in resonant tunneling diodes with thin well and barriers[J]. Applied Physics Express, 2012,5(12):124101.

[14] FEIGINOV M,SYDLO C,COJOCARI O,et al. Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz[J]. Applied Physics Letters, 2011,99(23):233506.

[15] KITAGAWA S,SUZUKI S,ASADA M. Wide frequency-tunable resonant tunneling diode terahertz oscillators using varactor diodes[J]. Electronics Letters, 2016,52(6):479-481.

[16] IKEDA Y,KITAGAWA S,OKADA K,et al. Direct intensity modulation of resonant tunneling diode terahertz oscillator up to ~30 GHz[J]. IEICE Electronics Express, 2015,12(3):20141161-20141161.

[17] SHIODE T,MUKAI T,KAWAMURA M,et al. Giga-bit wireless communication at 300 GHz using resonant tunneling diode detector[C]// Asia-Pacific Microwave Conference(APMC 2011). [S.l.]:IEEE, 2012:1122-1125.

[18] NAGATSUMA T. Terahertz communications technologies based on photonic and electronic approaches[C]// 18th European Wireless Conference. Poznan,Poland:[s.n.], 2012:1-4.

[19] OSHIMA N,HASHIMOTO K,HORIKAWA D,et al. Wireless data transmission of 30 Gbps at a 500 GHz range using resonant-tunneling-diode terahertz oscillator[C]// 2016 IEEE MTT-S International Microwave Symposium(IMS). [S.l.]: IEEE, 2016:1-4.

[20] MIYAMOTO T,YAMAGUCHI A,MUKAI T. Terahertz imaging system with resonant tunneling diodes[J]. Japanese Journal of Applied Physics, 2016,55(3):032201.

石向阳, 苏娟, 谭为, 张健. InP基 RTD太赫兹振荡源及其应用研究进展[J]. 太赫兹科学与电子信息学报, 2018, 16(1): 1. SHI Xiangyang, SU Juan, TAN Wei, ZHANG Jian. Research progress of InP-based resonant tunneling diode terahertz oscillator and its various applications[J]. Journal of terahertz science and electronic information technology, 2018, 16(1): 1.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!