激光与光电子学进展, 2018, 55 (7): 070606, 网络出版: 2018-07-20   

导线舞动条件下输电系统结构健康监测的光纤研究 下载: 688次

Structural Health Monitoring of Power Transmission System Based on Optical Fiber Sensor Under Transmission Line Galloping
作者单位
1 国网河南省电力公司电力科学研究院输电线路舞动防治技术实验室, 河南 郑州 450052
2 哈尔滨工程大学纤维集成教育部重点实验室, 黑龙江 哈尔滨 150001
摘要
借助光纤光栅(FBG)、相位敏感型光时域反射计(Φ-OTDR)及基于拉曼散射的分布式温度传感器(DTS),对4 km长的高压输电真型线路的健康监测进行研究。分析了导线舞动过程中输电塔架和输电导线的温度和应变的特征。利用安装在塔架结构上的104个FBG应变和温度传感器对塔架结构进行应变监测。利用Φ-OTDR及DTS,借助输电线路中现有的光纤复合架空地线(OPGW)内的通信光纤,实现了输电线路的舞动和温度的监测。三种光纤传感方案相互补充照应,实现了对整个输电系统结构健康监测。
Abstract
Health monitoring of the high-voltage transmission line system with the length of 4 km is analyzed by means of fiber Bragg grating (FBG), phase sensitive optical time-domain reflectometer (Φ-OTDR) and distributed temperature sensor (DTS) based on Raman scattering. The strain and temperature of the transmission tower and the transmission wire are focused on during the transmission line galloping.104 FBGs, working as strain and temperature sensors, are installed on one of the power towers. Based on the communication fibers in the optical fiber composite over-head ground wire(OPGW), Φ-OTDR and DTS technologies are used to monitor the galloping of the transmission line. These three kinds of optical fiber sensing schemes are complementary to each other and the health monitoring of the power transmission system is realized.
参考文献

[1] 唐健峰, 季树滨, 车雅良, 等. 光纤布拉格光栅制作中心波长控制技术[J]. 激光与光电子学进展, 2017, 54(7): 070604.

    Tang J F, Ji S B, Che Y L, et al. Control of central wavelength in fiber Bragg grating fabrication[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070604.

[2] Romero M A, Calligaris A, Silva M T C. A fiber-optic Bragg-grating temperature sensor for high-voltage transmission lines[C]∥Microwave and Optoelectronics Conference, 1997. Linking to the Next Century. Proceedings. 1997 SBMO/IEEE MTT-S International. IEEE, 1997, 1: 34-38.

[3] Ogawa Y, Iwasaki J, Nakamura K. A multiplexing load monitoring system of power transmission lines using fiber Bragg grating[C]∥12th International Conference on Optical Fiber Sensors, 1997 OSA Technical Digest Series, Washington, D.C., 1997, 16: 468-471.

[4] 黄新波. 输电线路在线监测与故障诊断[M]. 2版. 北京: 中国电力出版社, 2014.

    Huang X B. Transmission line online monitoring and fault diagnosis[M]. 2nd ed. Beijing: China Electric Power Press, 2014.

[5] 刘建军, 夏开全, 王景朝, 等. 基于光纤光栅的输电塔健康监测与试验研究[C]∥国际遥感会议, 2010.

    Liu J J, Xia K Q, Wang J C, et al. Theoretical and experimental research on structural health monitoring for power transmission towers based on FBG sensors[C]∥International Conference on Remote Sensing, 2010.

[6] 赵艳峰, 曹敏, 王达达, 等. FBG传感技术在变电站塔架应变监测中的应用研究[C]∥云南电力技术论坛, 2010.

    Zhao Y F, Cao M, Wang D D, et al. The application of FBG sensing technology in strain monitoring of substation tower[C]∥Yunnan Electric Power Technology Forum, 2010.

[7] 刘江, 闫思安, 李川, 等. FBG传感器监测气候条件对电力铁塔横担应变的影响[J]. 传感器与微系统, 2014, 33(4): 62-64.

    Liu J, Yan S A, Li C, et al. Effect of climate conditions monitored by FBG sensors on electricity tower cross arm strain[J]. Transducer & Microsystem Technologies, 2014, 33(4): 62-64.

[8] 胡明耀. 输电铁塔的光纤光栅结构监测与时序融合研究[D]. 昆明: 昆明理工大学, 2015.

    Hu M Y. Research on structure monitoring and timing fusion of transmission tower based on fiber Bragg gratings[D]. Kunming: Kunming University of Science and Technology, 2015.

[9] 孙媛凯, 李英娜, 胡明耀, 等. 输电铁塔塔身光纤光栅结构监测与时序融合研究[J]. 传感技术学报, 2016, 29(3): 451-455.

    Sun Y K, Li Y N, Hu M Y, et al. Research on structure monitoring and sequence fusion of transmission towerbody based on FBG[J]. Chinese Journal of Sensors and Actuators, 2016, 29(3): 451-455.

[10] 黄新波, 廖明进, 徐冠华, 等. 采用光纤光栅传感器的输电线路铁塔应力监测方法[J]. 电力自动化设备, 2016, 36(4): 68-72.

    Huang X B, Liao M J, Xu G H, et al. Stress monitoring method applying FBG sensor for transmission line towers[J]. Electric Power Automation Equipment, 2016, 36(4): 68-72.

[11] 黄春林, 张利平. 光栅传感技术在输电杆塔倾斜监测中的应用[J]. 电力系统通信, 2009, 30(10): 28-31.

    Huang C L, Zhang L P. Application of fiber grating sensing technology in inclination monitoring of power transmission pole and tower[J]. Telecommunications for Electric Power System, 2009, 30(10): 28-31.

[12] 谢强, 严承涌. 1000 kV特高压交流同塔双回输电塔线耦联体系风洞试验[J]. 高电压技术, 2010, 36(4): 900-906.

    Xie Q, Yan C Y. Wind tunnel test on 1000 kV UHV AC double circuit transmission tower-conductor coupling system[J]. High Voltage Engineering, 2010, 36(4): 900-906.

[13] 于亚红. 基于光纤Bragg光栅的鸭嘴式横担主材受力形变的检测[D]. 昆明: 昆明理工大学, 2011.

    Yu Y H. Detection of forced deformation of main body of duckbill cross arm based on fiber bragg grating[D]. Kunming: Kunming University of Science and Technology, 2011.

[14] 徐树振, 田雷, 赵成均, 等. 基于FBG的鸭嘴式横担主材应变研究[J]. 光学技术, 2014, 40(1): 58-61.

    Xu S Z, Tian L, Zhao C J, et al. Research of FBG based on duckbill-type cross arms by the strain[J]. Optical Technique, 2014, 40(1): 58-61.

[15] 王健志, 邱涛, 吴德锋, 等. 一种检验螺栓载荷的装置: CN202433131U[P]. 2012-09-12.

    Wang J Z, Qiu T, Wu D F, et al. Device for inspecting load of bolt: CN202433131U[P]. 2012-09-12.

[16] 李佳奇, 曹敏, 胡威, 等. 光纤光栅在输电铁塔结构检测中的应用[J]. 云南电力技术, 2015, 43(s2): 134-135.

    Li J Q, Cao M, Hu W, et al. Application of fiber bragg grating in structure test of transmission tower[J]. Yunnan Electric Power, 2015, 43(s2):134-135.

[17] 陈天英. 基于光纤传感技术输电线路在线监测的研究[D]. 北京: 华北电力大学, 2015.

    Chen T Y. Research on transmission line online monitoring based on optical fiber sensing technology[D]. Beijing: North China Electric Power University, 2015.

[18] 孙诗晴, 初凤红. 基于优化神经网络算法的光纤布拉格光栅电流传感器的温度补偿[J]. 光学学报, 2017, 37(10): 1006001.

    Sun S Q, Chu F H. Temperature compensation of fiber Bragg grating current sensor based on optimized neural network algorithm[J]. Acta Optica Sinica, 2017, 37(10): 1006001.

[19] 唐波, 黄俊斌, 顾宏灿. 分布反馈式光纤激光加速度传感器结构设计[J]. 中国激光, 2017, 44(10): 1010002.

    Tang B, Huang J B, Gu H C. Structural design of distributed feedback fiber laser accelerometer sensors[J]. Chinese Journal of Lasers, 2017, 44(10): 1010002.

[20] Gangopadhyay T K, Bjerkan L. Fiber-optic sensor for real-time monitoring of temperature on high voltage (400 KV) power transmission lines[J]. Proceedings of SPIE, 2009, 7503: 75034M.

[21] 徐拥军, 谢书鸿, 栗鸣, 等. 基于OPPC的温度和应力光纤光栅传感技术[J]. 现代传输, 2012(6): 59-62.

    Xu Y J, Xie S H, Li M, et al. OPPC temperature and stress sensing technology based on fiber bragg grating[J]. Modern Transmission, 2012(6): 59-62.

[22] 龚延兴, 杨静, 江大林, 等. 光纤复合导线在110-220千伏线路上施工关键技术研究[J]. 电气应用, 2013, s2: 394-397.

    Gong Y X, Yang J, Jiang D L, et al. Research on key techniques for construction of optical fiber composite conductors on 110-220 kv lines[J]. Electrotechnical Application, 2013, s2: 394-397.

[23] Bjerkan L. Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines[J]. Applied Optics, 2000, 39(4): 554-560.

[24] 李星蓉. 光纤光栅测量技术的应用研究[J]. 电力系统通信, 2010, 31(9): 58-61.

    Li X R. The application research of optical fiber grating technology in power system[J]. Telecommunications for Electric Power System, 2010, 31(9): 58-61.

[25] Zhang Z. Novel monitoring method of power transmission line galloping based on fiber Bragg grating sensor[J]. Optical Engineering, 2011, 50(11): 114403.

[26] 芮晓明, 黄浩然, 张少泉, 等. 基于光纤光栅传感器的输电线路舞动监测系统设计[C]∥第30届中国控制会议, 2011: 4327-4330.

    Rui X M, Huang H R, Zhang S Q, et al. On-line monitoring system on power transmission line galloping based on fiber grating sensors[C]∥Proceedings of the 30th Chinese Control Conference, 2011: 4327-4330.

[27] 杜森, 蔡炜, 邓鹤鸣, 等. 光纤光栅复合绝缘子的试制及标定实验[J]. 高电压技术, 2012, 38(10): 2774-2780.

    Du S, Cai W, Deng H M, et al. Production and calibration test of the composite insulator with fiber bragg grating embedded[J]. High Voltage Engineering, 2012, 38(10): 2774-2780.

[28] 王磊, 曹敏, 梁仕斌, 等. 应用于输电线路覆冰状态监测的光纤光栅在线监测技术的研究[J]. 电瓷避雷器, 2014(5): 21-24.

    Wang L, Cao M, Liang S B, et al. Study on the fiber bragg grating online monitor technology applied in icing state monitoring of transmission lines[J]. Insulators and Surge Arresters, 2014(5): 21-24.

[29] 杨洪磊. 线路覆冰光纤光栅在线监测系统的研究[D]. 昆明: 昆明理工大学, 2014.

    Yang H L. Research on fiber gratingonline monitoring system of icing line[D]. Kunming: Kunming University of Science and Technology, 2014.

[30] 邓元实, 贺含峰, 刘凤莲, 等. 光纤光栅器件在输电线路覆冰监测中的应用[J]. 电瓷避雷器, 2014 (3): 39-43.

    Deng Y S, He H F, Liu F L, et al. Application of fiber bragg grating device in icing monitoring system of transmission lines[J]. Insulators and Surge Arresters, 2014(3): 39-43.

[31] 任大鹏, 王树威, 张广斌. 基于光纤光栅的输电线路综合在线监测系统的研究[J]. 科技创新与应用, 2015(24): 7.

    Ren D P, Wang S W, Zhuang G B. Research on transmission line integrated online monitoring system based on fiber grating[J]. Technology Innovation and Application, 2015(24): 7.

[32] 冯凯滨, 宋牟平, 夏俏兰, 等. 基于直接检测相干光时域反射计的高分辨率分布式光纤传感技术[J]. 光学学报, 2016, 36(1): 016002.

    Feng K B, Song M P, Xia Q L, et al. High-resolution distributed optical-fiber sensing technology based on direct-detecting coherent optical time-domain reflectometer[J]. Acta Optica Sinica, 2016, 36(1): 016002.

[33] 卢斌, 王照勇, 郑汉荣, 等. 高空间分辨率长距离分布式光纤振动传感系统[J]. 中国激光, 2017, 44(10): 1015001.

    Lu B, Wang Z Y, Zheng H R, et al. Long-distance distributed optical fiber vibration sensing system with high spatial resolution[J]. Chinese Journal of Lasers, 2017, 44(10): 1015001.

[34] 罗健斌. 基于光纤传感技术的高压输电线路覆冰状态监测研究[D]. 广州: 华南理工大学, 2013.

    Luo J B. Research on icing condition monitoring of high voltage transmission line based on optical fiber sensing technology[D]. Guangzhou: South China University of Technology, 2013.

[35] 史尊伟. 基于BOTDR技术的架空输电线路监测系统研制与实验研究[D]. 广州: 华南理工大学, 2015.

    Shi Z W. Development and experimental research of overhead transmission line monitoring system based on BOTDRtechnology[D]. Guangzhou: South China University of Technology, 2015.

[36] 陆飙, 陈利民, 刘晓波, 等. 一种新型输电线缆风舞在线监测系统及其舞动参数测量方法[J]. 电力学报, 2017, 32(1): 49-56.

    Lu B, Chen L M, Liu X B, et al. A novel on-line power transmission line galloping monitoring system and its quantative measurement method[J]. Journal of Electric Power, 2017, 32(1): 49-56.

[37] 张旭苹, 武剑灵, 单媛媛, 等. 基于分布式光纤传感技术的智能电网输电线路在线监测[J]. 光电子技术, 2017, 37(4): 221-229.

    Zhang X P, Wu J L, Shan Y Y, et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fiber sensing technology[J]. Optoelectronic Technology, 2017, 37(4): 221-229.

谢凯, 张洪英, 赵衍双, 田野, 吕中宾, 魏建林, 柴全, 刘艳磊, 孟怡晨, 张建中, 杨军, 苑立波. 导线舞动条件下输电系统结构健康监测的光纤研究[J]. 激光与光电子学进展, 2018, 55(7): 070606. Xie Kai, Zhang Hongying, Zhao Yanshuang, Tian Ye, Lü Zhongbin, Wei Jianlin, Chai Quan, Liu Yanlei, Meng Yichen, Zhang Jianzhong, Yang Jun, Yuan Libo. Structural Health Monitoring of Power Transmission System Based on Optical Fiber Sensor Under Transmission Line Galloping[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070606.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!