激光与光电子学进展, 2018, 55 (9): 092901, 网络出版: 2018-09-08   

镜面散射对离轴三反系统成像质量的影响

Effect of Surface Scattering on Imaging Performance for Off-Axis Three Mirror Optical System
作者单位
1 中国科学院长春光学精密机械与物理研究所中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京100049
摘要
针对天文望远镜光学系统中镜面散射对成像质量的影响, 提出了一种基于反射镜表面功率谱密度计算离轴三反成像系统像面环围能量比的方法。基于Harvey-Shack散射模型, 提出了像面光强分布与反射镜表面功率谱密度的关系, 描述了离轴三反系统中的散射在各个反射面的传播过程, 并给出了像面光强分布与反射镜表面有效均方根相对于工作波长的比值的关系。通过多手段测量获取1.5 m口径加工样件在不同空间频率频段内的表面功率谱密度, 利用k-相关模型拟合其全频段一维功率谱密度和二维功率谱密度, 加工样件的面形精度有效均方根(在1/D到1/λ范围内)为13.7 nm。对比了离轴三反系统在不同工作波长下像面环围能量比的分布, 给出在我国某大型空间天文望远镜在考虑散射情况下的加工要求, 镜面的有效均方根为10.3 nm, 其中低频误差均方根小于8 nm。
Abstract
Aiming at the effect of surface scattering on the imaging performance for astronomical telescope optical system, we propose a method of calculating the encircled energy in image plane based on the power spectrum density (PSD) of the mirror surface. The relationship between the intensity distribution of the image surface and the power spectral density of the mirror surface is proposed based on Harvey-Shack scattering model. The propagation of the scattering in the off-axis three mirror optical system on each reflecting surface is described. The relationship between irradiance distribution and the ratio of the effective root-mean-square (RMS) to wavelength is discussed. The surface power spectral density in different spatial frequency bands of 1.5 m-diameter optical surface is obtained by different measurements, and the full-band one-dimensional and two-dimensional power spectral density are fitted by k-correlation model. It shows that the effective RMS of surface shape on the processed sample is 13.7 nm. Then the encircled energy distribution of the image plane at different wavelengths is compared. The processing requirements of a large space astronomical telescope in our country including scattering conditions are given: the effective RMS of mirror surface must be less than 10.3 nm, and the RMS of low frequency error needs to be less than 8 nm.
参考文献

[1] 张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展[J]. 光学 精密工程, 2016, 24(11): 2613-2626.

    Zhang X J, Fan Y C, Bao H, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 2016, 24 (11): 2613-2626.

[2] 李旭鹏, 石进峰, 王炜, 等. 空间大口径主反射镜拼接化结构技术综述[J]. 激光与光电子学进展, 2018, 55(3): 030002.

    Li X P, Shi J F, Wang W, et al. Review on the splicing, structure technology of large space primary mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030002.

[3] Stover J C. Optical scattering: measurement and analysis[M]. 3rd ed. New York: McGraw-Hill, 1995.

[4] Krywonos A, Harvey J E, Choi N. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2011, 28(6): 1121-1138.

[5] Zeng X F, Yan F, Zhang X J. Effects of structured surface errors on MTF of off-axis TMA system[J]. Proceedings of SPIE, 2012, 8416: 84161B.

[6] 王孝坤. 一种高分辨力空间相机的光学设计[J]. 光学学报, 2015, 35(1): 0122001.

    Wang X K. Optical design of a high resolution space camera[J]. Acta Optica Sinica, 2015, 35(1): 0122001.

[7] 王蕴琦, 刘伟奇, 付瀚毅, 等. 中高轨道空间详查相机光学设计[J]. 中国激光, 2016, 43(1): 0116001.

    Wang Y Q, Liu W Q, Fu H Y, et al. Optical design of space detailed survey camera in the middle or high orbit[J]. Chinese Journal of Lasers, 2016, 43(1): 0116001.

[8] 付怀洋, 周泗忠, 姜凯, 等. 镜面粗糙度对远紫外望远镜能量集中度的影响[J]. 红外与激光工程, 2014, 43(8): 2562-2567.

    Fu H Y, Zhou S Z, Jiang K, et al. Effects of mirror surface roughness on encircled energy for far ultraviolet telescopes[J]. Infrared and Laser Engineering, 2014, 43(8): 2562-2567.

[9] Harvey J E, Krywonos A.Systems engineering analysis of image quality[J]. Proceedings of SPIE, 2000, 4093: 379-389.

[10] Church E L.Fractal surface finish[J]. Applied Optics, 1988, 27(8): 1518-26.

[11] Harvey J E. Integrating optical fabrication and metrology into the optical design process[J]. Applied Optics, 2015, 54(9): 2224-2233.

[12] Nicodemus F E. Reflectance nomenclature and directional reflectance and emissivity[J]. Applied Optics, 1970, 9(6): 1474-1475.

[13] Harvey J E, Choi N, Krywonos A, et al. Calculating BRDFs from surface PSDs for moderately rough optical surfaces[J]. Proceedings of SPIE, 2009, 7426: 74260I.

[14] Church E L, Takacs P Z. Light scattering from non-Gaussian surfaces[J]. Proceedings of SPIE, 1995, 2541: 91-108.

[15] Peterson G L. Analytic expression for in-field scattered light distribution[J]. Proceedings of SPIE, 2004, 5178: 184-194.

[16] Harvey J E, Pfisterer R N. Evolution of the transfer function characterization of surface scatter phenomena[J]. Proceedings of SPIE, 2016, 9961: 99610E.

[17] 杨相会, 沈卫星, 张雪洁, 等. 不同干涉仪检测光学元件功率谱密度的比较[J]. 中国激光, 2016, 43(9): 0904002.

    Yang X H, Shen W X, Zhang X J, et al. Comparison among different interferometers for measuring power spectral density of optical elements[J]. Chinese Journal of Lasers, 2016,43(9): 0904002.

吕洋, 曾雪锋, 张峰. 镜面散射对离轴三反系统成像质量的影响[J]. 激光与光电子学进展, 2018, 55(9): 092901. Lü Yang, Zeng Xuefeng, Zhang Feng. Effect of Surface Scattering on Imaging Performance for Off-Axis Three Mirror Optical System[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092901.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!