光子学报, 2017, 46 (9): 0930002, 网络出版: 2017-10-16   

三维荧光光谱结合HGA-RBF神经网络在多环芳烃浓度检测中的应用

Concentration Detection of Polycyclic Aromatic Hydrocarbon Combining Three-dimensional Fluorescence Spectroscopy with HGA-RBF Neural Network
作者单位
燕山大学 电气工程学院 河北省测试计量技术及仪器重点实验室,河北 秦皇岛 066004
摘要
采用FS920荧光光谱仪分析了苯并[k]荧蒽(BkF)、苯并[b]荧蒽(BbF)和两者混合物的荧光特性.结果表明BkF的两个荧光峰分别位于306 nm/405 nm和306 nm/430 nm,BbF的两个荧光峰分别位于306 nm/410nm和306 nm/435 nm.BkF和BbF不同浓度配比及其相互间的荧光干扰,使得混合物荧光特性差异较大,荧光强度和浓度间关系变得复杂.为准确测定混合物中BkF和BbF的浓度,采用递阶算法优化的径向基神经网络对其进行检测,结果表明BkF和BbF的平均回收率分别为98.45%和97.71%.该方法能够实现多环芳烃类污染物共存成分的识别和浓度预测.
Abstract
Three-dimensional excitation-emission matrix fluorescence spectroscopy of Benzo [k] Fluoranthene (BkF), Benzo [b] Fluoranthene (BbF), and a mixture of these two substances were analyzed with FS920 fluorescence spectrometer. The results show that the fluorescence peaks of BkF can be observed at 306 nm/405 nm and 306 nm/430 nm, and the fluorescence peaks of BbF locate at 306 nm/410 nm and 306 nm/435 nm. In the mixture of BkF and BbF, concentration ratio and fluorescence interferences make excitation-emission matrix spectra of mixture change largely. Hence, the relationship between fluorescence intensity and concentration is complicated. In order to determine the concentration of BkF and BbF in mixture, radial basis function neural network optimized by hierarchical genetic algorithm was applied and the average recovery of BkF and BbF are 98.45% and 97.71%, respectively. The results showed that the possibility of the identification and concentration prediction of different components in mixed sample of polycyclic aromatic hydrocarbons.
参考文献

[1] MELYMUK L, ROBSON M, HELM P A, et al. PCBs, PBDEs, and PAHs in toronto air: spatial and seasonal trends and implications for contaminant transport[J].Science of the Total Environment, 2012, 429(6): 272-280.

[2] YIN Dan-dan,WU-Jing, XIE Chao-bo, et al. Comparison of three-dimensional fluorescence characteristics of two isomers:phenanthrene and anthrancen[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3263.

[3] AYLA D. Factorial design optimization of solid-phase microextraction for high-performance liquid chromatography-ultraviolet spectrometry analysis of polycyclic aromatic hydrocarbons in cigarette filter tar[J]. Polycyclic Aromatic Compounds, 2014, 34(2): 115-134.

[4] ZHAO Yue, HONG Bo, FAN Yue-qing, et al. Accurate analysis of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs homologs in crude oil for improving the gas chromatography/mass spectrometry performance[J]. Ecotoxicology & Environmental Safety, 2014, 100(1): 242-250.

[5] GROVA N, SALQUEBRE G, SCHRODER H, et al. Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry[J].Chemical Research in Toxicology, 2011, 24(10): 1653-1667.

[6] NACCARIA C, CRISTANIA M, GIOFREB F, et al. PAHs concentration in heat-treated milk samples[J]. Food Research International, 2011, 44(3): 716-724.

[7] ALRASHDAN A, HELALEH M, NISAR A, et al. Determination of the levels of polycyclic aromatic hydrocarbons in toasted bread using gas chromatography mass spectrometry[J].International Journal Analytical Chemistry, 2010, 2010(7): 1-8.

[8] MASHIN N I, RAZUVAEV A G, CHERNYAEVA E A, et al. Mutual influence of elements in x-ray fluorescence analysis of thin bilayer Ni/Ge-systems[J]. Journal of Applied Spectroscopy, 2013, 80(1): 1-7.

[9] NAGL S, SCHAEFERLING M, WOLFBERIES O S. Fluorescence analysis in microarray technology[J]. Microchimica Acta, 2005, 151(1-2): 1-21.

[10] ALIB H, ADELNM, AMIR H M. A reliable radial basis function neural network model (RBF-NN) for the prediction of densities of ionic liquids[J]. Journal of Molecular Liquids, 2017, 231(4): 462-473.

[11] FATHI V, MONTAZER G A. An improvement in RBF learning algorithm based on PSO for real time applications[J]. Neurocomputing, 2013, 111(6): 169-176.

[12] ZHANG Yi-bo, HE Huan, MENG Qing-fan, et al. Application of near infrared reflectance spectroscopy-radial basis function neural network for non-destructive determination of coriolus versicolor[J].Acta Optica Sinica, 2010, 30(12): 3552-3557.

[13] ARAS N. Forecasting residential consumption of natural gas using genetic algorithms[J]. Energy Exploration & Exploitation, 2008, 26(4): 241-266.

[14] ANTONIO C C. A study on synergy of multiple crossover operators in a hierarchical genetic algorithm applied to structural optimisation[J]. Structural &Multidisciplinary Optimization, 2009, 32(2): 117-135.

[15] VASILE M, LESKINEN J, LEE D. Active flow control of airfoil using mesh/meshless methods coupled to hierarchical genetic algorithms for drag reduction design[J]. Engineering Computations, 2013. 30(4): 562-580.

[16] Katrin F, Robert K, Thomas A, et al. Normalization and gene p-value estimation: issues in microarray data processing[J].Bioinformatics & Biology Insights, 2008, 2(2): 291.

[17] CHEN C L, HIROSHI I, GADI W, et al. Individual A-scan signal normalization between two spectral domain optical coherence tomography devices[J]. Investigative, Ophthalmology & Visual Science, 2013, 54(5): 3463-71.

王书涛, 郑亚南, 王志芳, 马晓晴, 王昌冰, 程琪. 三维荧光光谱结合HGA-RBF神经网络在多环芳烃浓度检测中的应用[J]. 光子学报, 2017, 46(9): 0930002. WANG Shu-tao, ZHENG Ya-nan, WANG Zhi-fang, MA Xiao-qing, WANG Chang-bing, CHENG Qi. Concentration Detection of Polycyclic Aromatic Hydrocarbon Combining Three-dimensional Fluorescence Spectroscopy with HGA-RBF Neural Network[J]. ACTA PHOTONICA SINICA, 2017, 46(9): 0930002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!