应用激光, 2017, 37 (1): 66, 网络出版: 2017-06-27   

不同预热温度下宽带激光熔覆铁基涂层数值模拟

Numerical Simulation Iron-based Cladding Coating with Wide-band Laser at Different Preheating Temperatures
作者单位
中国石油大学(华东)机电工程学院, 山东 青岛 266580
摘要
利用有限元分析软件SYSWELD建立了三维有限元模型, 对不同预热温度下激光熔覆铁基涂层的过程进行了数值模拟, 分析了不同预热温度下温度场和组织转变的变化规律, 研究了冷却速度和组织转变对残余应力场的影响。结果表明, 预热温度越高, 熔覆层中心的峰值温度越高, 同时能有效降低熔覆层冷却速度。预热温度在20~300 ℃范围内时, 随着预热温度的增加, 熔覆层贝氏体含量逐渐增加, 铁素体和马氏体含量逐渐减少, 使得熔覆层残余应力增大; 预热温度高于300 ℃以后, 随预热温度增加冷却速度显著降低, 组织中铁素体含量逐渐增加, 贝氏体含量逐渐减少, 残余应力随之减小。
Abstract
In this paper, a 3-D finite element model was established by means of a finite element code—SYSWELD. The laser cladding process of iron-based coatings was simulated and the change rules of temperature field and microstructural transformation were analyzed both under different preheating temperatures. The effects of cooling rate and microstructural transformation on residual stress field are also studied. The results show that the higher the preheating temperature is, the higher the peak temperature of the cladding center is, which will reduce the cooling rate. When the preheating temperature is at the range of 20 ℃ to 300 ℃, with the increasing of it, the content of bainite in cladding layer increases and the content of ferrite and martensite decreases gradually which result in the increase of residual stress. However, when the preheating temperature is above 300 ℃, with the increasing of it, the cooling rate decreases sharply, the content of ferrite in cladding layer increases and the bainite decreases, which bring out the decrease of the residual stress gradually.
参考文献

[1] 董辰辉, 姚建华, 胡晓冬, 等.激光熔覆载气式同轴送粉三维气流流场的数值模拟[J].中国激光, 2010, 37(1): 261-265.

    DONG CHENHUI, YAO JIANHUA, HU XIAODONG, et al.Three dimensional numerical simulation of coaxial powder feeding flow with carrying gas[J].Chinese Journal of Lasers, 2010, 37(1): 261-265.

[2] TSENG W C, AOH J N.Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J].Optics & Laser Technology, 2013(48): 141-152.

[3] 占焕校, 王勇, 韩涛, 等.激光宽带加工数值模拟中的热源模型[J].材料热处理学报, 2007, 28(6): 156-160.

    ZHAN HUANXIAO, WANG YONG, HAN TAO, et al.Heat source model in numerical simulation of laser wide-band processing[J].Transactions of Materials and Heat Treatment, 2007, 28(6): 156-160.

[4] PARISA FARAHMAND, RADOVAN KOVACEVIC.An experimental-numerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J].Optics & Laser Technology, 2014(6): 154-168.

[5] BRUCKER F, LEPSKI D, BEYER E.Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding[J].Journal of Thermal Spray Technology, 2007, 16(3): 355-373.

[6] 程广萍, 李明喜, 何宜柱, 等.激光熔覆层温度场和应力场的数值模拟[J].热处理, 2009, 24(4): 49-54.

    CHENG GUANGPING, LI MINGXI, HE YIZHU, et al.Numerical simulation of temperature field and stress field in laser clad coating[J].Heat Treatment, 2009, 24(4): 49-54.

[7] 刘昊, 虞钢, 何秀丽, 等.送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J].中国激光, 2013, 40(12): 1203007.

    LIU HAO, YU GANG, HE XIULI, et al.Three-dimensiona numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J].Chinese Journal of Lasers, 2013, 40(12): 1203007.

[8] KOISTINEN D P, MARBURGER R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J].Acta Metallurgica, 1959, 7(1): 59-60.

[9] 薛忠明, 曲文卿, 柴鹏, 等.焊接变形预测技术研究进展[J].焊接学报, 2003, 24(3): 87-91.

    XUE ZHONGMING, QU WENQING, CHAI PENG, et al.Review on prediction of welding distortion[J].Transactions of the China Welding Institution, 2003, 24(3): 87-91.

[10] LI CHAOWEN, WANG YONG, HAN BIN.Microstructure, hardness and stress in melted zone of 42CrMo steel by wide-band laser surface melting[J].Optics and Lasers in Engineering, 2011, 49(4): 530-535.

[11] 李美艳, 韩彬, 蔡春波, 等.激光熔覆镍基合金温度场和应力场数值模拟[J].焊接学报, 2015, 36(05): 25-28.

    LI MEIYAN, HAN BIN, CAI CHUNBO, et al.Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J].Transactions of the China Welding Institution, 2015, 36(5): 25-28.

[12] 赵忠魁.金属材料学及热处理技术[M].北京: 国防工业出版社, 2012: 10, 25-26.

[13] 朱明.材料热处理原理及工艺[M].徐州: 中国矿业大学出版社, 2013: 72-73, 83, 107.

[14] MCDONALD G, HPENDRICKS R C.Effect of thermal cycling on ZrO2-Y2O3 thermal barrier coatings[J].Thin Solid Films, 1980, 73(10): 491-496.

蔡春波, 李美艳, 韩彬, 王勇, 李锦. 不同预热温度下宽带激光熔覆铁基涂层数值模拟[J]. 应用激光, 2017, 37(1): 66. Cai Chunbo, Li Meiyan, Han Bin, Wang Yong, Li Jin. Numerical Simulation Iron-based Cladding Coating with Wide-band Laser at Different Preheating Temperatures[J]. APPLIED LASER, 2017, 37(1): 66.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!