激光与光电子学进展, 2018, 55 (10): 100003, 网络出版: 2018-10-14   

微型近红外光谱仪关键技术研究进展 下载: 1774次封面文章

Research Progress in Key Technologies on Near Infrared Microspectrometer
庾繁 1,2,3温泉 1,2,3雷宏杰 1,2,3黄良坤 1,2,3温志渝 1,2,3
作者单位
1 重庆大学微系统研究中心, 重庆 400044
2 重庆大学新型微纳器件与系统技术国防重点学科实验室, 重庆 400044
3 重庆大学光电工程学院, 重庆 400044
摘要
综述了近年来国内外阵列检测型、光栅扫描型、滤光片型、傅里叶变换型和阿达玛变换型等多种类型微型近红外光谱仪关键技术的研究进展, 详细讨论了各种类型的优缺点、适合的应用领域及存在的问题。最后, 对微型近红外光谱仪的应用和发展趋势进行了总结和展望。
Abstract
The research progress in key technologies on various types of near infrared microspectrometers, such as array detector, scanning grating, filter, Fourier transform, and Hadamard transform, is reviewed. Different instruments are discussed in detail, including their advantages and disadvantages, suitable application fields, and current problems. Finally, the application and development tendency of near infrared microspectrometers are summarized and prospected.
参考文献

[1] Brennan D, Alderman J, Sattler L, et al. Issues in development of NIR micro spectrometer system for on-line process monitoring of milk product[J]. Measurement, 2003, 33(1): 67-74.

[2] Schuler L P, Milne J S, Dell J M, et al. MEMS-based microspectrometer technologies for NIR and MIR wavelengths[J]. Journal of Physics D, 2009, 42(13): 133001.

[3] Barthès B G, Brunet D, Rabary B, et al. Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community[J]. Soil Biology & Biochemistry, 2011, 43(8): 1649-1659.

[4] Tseng V F G, Xie H. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing[J]. Applied Physics Letters, 2015, 107(21): 214102.

[5] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70.

[6] Hamamatsu. C11708MA 微型光谱仪MS系列[EB/OL]. [2018-03-01]. http:∥www.hamamatsu.com.cn/product/category/10345/0/11945/index.html.

    Hamamatsu. C11708MA microspectrometer - MS series [EB/OL]. [2018-03-01]. http:∥www.hamamatsu.com.cn/product/category/10345/0/11945/index.html.

[7] 向贤毅, 温志渝, 龙再川, 等. 微型近红外光谱仪分析系统的研制[J]. 光谱学与光谱分析, 2009, 29(8): 2286-2290.

    Xiang X Y, Wen Z Y, Long Z C, et al. Development of analysis system for miniature near-infrared spectrometer[J]. Spectroscopy & Spectral Analysis, 2009, 29(8): 2286-2290.

[8] Liu K, Yu F H. Accurate wavelength calibration method using system parameters for grating spectrometers[J]. Optical Engineering, 2013, 52(1): 013603.

[9] Grueger H, Wolter A, Schenk H, et al. Realization of a spectrometer with micromachined scanning grating[J]. Proceedings of SPIE, 2003, 4945: 46-53.

[10] Pügner T, Knobbe J, Grüger H, et al. Design of a hybrid-integrated MEMS scanning grating spectrometer[J]. Proceedings of SPIE, 2011, 8167: 816718.

[11] Pügner T, Grüger H. Miniaturized NIR scanning grating spectrometer for use in mobile phones[J]. Proceedings of SPIE, 2016, 9855: 985502.

[12] Yan B, Yuan W, Sun R, et al. Design and simulation of microspectrometer based on torsional MEMS grating[J]. Proceedings of SPIE, 2010, 7657: 76570V.

[13] Qiao D, Kang B, Liu Y, et al. A resonance scanning grating based on SOI for microspectrometer application[J]. Laser Physics, 2013, 23(3): 035601.

[14] Nie Q, Wen Z, Huang J. A high-performance scanning grating based on tilted (111) silicon wafer for near infrared micro spectrometer application[J]. Microsystem Technologies, 2015, 21(8): 1749-1755.

[15] Nie Q, Wen Z, Huang J. Design and fabrication of a MEMS high-efficiency NIR-scanning grating based on tilted (111) silicon wafer[J]. European Physical Journal Applied Physics, 2015, 72(1): 10702.

[16] Keating A J, Antoszewski J, Silva K K M B D, et al. Design and characterization of Fabry-Pérot MEMS-based short-wave infrared microspectrometers[J]. Journal of Electronic Materials, 2008, 37(12): 1811-1820.

[17] Dell J M, Milne J S, Antoszewski J, et al. MEMS-based Fabry-Perot microspectrometers for agriculture[J]. Proceedings of SPIE, 2009, 7319: 73190K.

[18] Milne J S, Dell J M, Keating A J, et al. Widely tunable MEMS-based Fabry-Perot filter[J]. Journal of Microelectromechanical Systems, 2009, 18(4): 905-913.

[19] Akujrvi A, Gao B, Mannila R, et al. MOEMS FPI sensors for NIR-MIR microspectrometer applications[J]. Proceedings of SPIE, 2016, 9760: 97600M.

[20] Hamamatsu. 微型光谱仪 [EB/OL]. [2018-03-01]. http:∥www.hamamatsu.com.cn/product/category/10345/10345/index.html page=1.

    Hamamatsu. Microspectrometer [EB/OL]. [2018-03-01]. http:∥www.hamamatsu.com.cn/product/category/10345/10345/index.html page=1.

[21] Emadi A, Wu H, Grabarnik S, et al. Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer[J]. Sensors & Actuators A, 2010, 162(2): 400-405.

[22] 温志渝, 陈刚, 王建国. 基于Fabry-Perot腔阵列的集成化微型光谱仪方案及模拟[J]. 光谱学与光谱分析, 2006, 26(10): 1955-1959.

    Wen Z Y, Chen G, Wang J G. The project and simulation of a compositive miniature spectrum instrument based on the array of Fabry-Perot cavity[J]. Spectroscopy & Spectral Analysis, 2006, 26 (10): 1955-1959.

[23] Emadi A, Wu H, Grabarnik S, et al. IC-compatible fabrication of linear variable optical filters for microspectrometer[J]. Procedia Chemistry, 2009, 1(1): 1143-1146.

[24] Emadi A. Near- and mid-IR microspectrometers based on linear-variable optical filters[C]∥Sensors, IEEE, 2011: 424-427.

[25] Ghaderi M, Silva M F, Emadi A, et al. Design, fabrication and characterization of LVOF-based IR microspectrometers[J]. Proceedings of SPIE, 2014, 9130: 91300T.

[26] Wallrabe U, Solf C, Mohr J, et al. Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator[J]. Sensors & Actuators A, 2005, 123: 459-467.

[27] Yu K, Lee D, Krishnamoorthy U, et al. Micromachined Fourier transform spectrometer on silicon optical bench platform[J]. Sensors & Actuators A, 2006, 130(2): 523-530.

[28] Quenzer H J, Gu-Stoppel S, Stoppel F, et al. Piezoelectrically driven translatory optical MEMS actuator with 7 mm apertures and large displacements[J]. Proceedings of SPIE, 2015, 9375: 93750O.

[29] Wang W, Chen J P, Zivkovic A S, et al. A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror[J]. Journal of Microelectromechanical Systems, 2016, 25(2): 347-355.

[30] Han F, Wang W, Zhang X, et al. Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers[J]. Journal of Microelectromechanical Systems, 2016, 25(4): 750-760.

[31] Han F T. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror[J]. Optics Express, 2016, 24(20): 22650-22660.

[32] Kumar H, Nisam N, Kulkarni A, et al. Lamellar grating interferometer FTIR spectroscopy and its applications: a review[C]∥15th International Conference on Nanotechnology, IEEE, 2015: 1107-1110.

[33] Ataman C, Urey H, Wolter A. A Fourier transform spectrometer using resonant vertical comb actuators[J]. Journal of Micromechanics & Microengineering, 2006, 16(12): 2517-2523.

[34] Ataman C, Urey H. Compact Fourier transform spectrometers using FR4 platform[J]. Sensors & Actuators A, 2009, 151(1): 9-16.

[35] Lee F, Zhou G, Yu H, et al. A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system[J]. Sensors & Actuators A, 2009, 149(2): 221-228.

[36] Wang S, Yu H, Siong C F. A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation[J]. IEEE Sensors Journal, 2010, 10(12): 1869-1874.

[37] Zhang Z H, Mo X X, Guo Y J, et al. A novel MOEMS NIR spectrometer[J]. Physics Procedia, 2011, 19: 110-114.

[38] Wei W, Huang S, Zhu Y, et al. Analysis of a Hadamard transform near-infrared spectrometer based on grating light modulator[J]. Proceedings of SPIE, 2009, 7159: 71590N.

[39] 张智海, 高玲肖, 郭媛君, 等. 数字微镜光谱仪的互补S编码矩阵的设计及实验[J]. 光谱学与光谱分析, 2012, 32(12): 3429-3432.

    Zhang Z H, Gao L X, Guo Y J, et al. The design and experiment of complementary S coding matrix based on digital micromirror spectrometer[J]. Spectroscopy & Spectral Analysis, 2012, 32(12): 3429-3432.

[40] Wang X D, Liu H, Lu Z W, et al. Design of a spectrum-folded Hadamard transform spectrometer in near-infrared band[J]. Optics Communications, 2014, 333: 80-83.

[41] Quan X, Liu H, Lu Z, et al. Correction and analysis of noise in Hadamard transform spectrometer with digital micro-mirror device and double sub-gratings[J]. Optics Communications, 2016, 359: 95-101.

[42] Wang X, Liu H, Juschkin L, et al. Freeform lens collimating spectrum-folded Hadamard transform near-infrared spectrometer[J]. Optics Communications, 2016, 380: 161-167.

庾繁, 温泉, 雷宏杰, 黄良坤, 温志渝. 微型近红外光谱仪关键技术研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100003. Yu Fan, Wen Quan, Lei Hongjie, Huang Liangkun, Wen Zhiyu. Research Progress in Key Technologies on Near Infrared Microspectrometer[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!