激光与光电子学进展, 2017, 54 (4): 040001, 网络出版: 2017-04-19   

基于叠层衍射成像术的量化相位显微成像 下载: 4425次

Quantitative Phase Microscopy Imaging Based on Ptychography
潘安 1,2,*张艳 1,2赵天宇 1,2汪召军 1,2但旦 1,2史祎诗 2,3姚保利 1
作者单位
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 中国科学院光电研究院, 北京 100094
摘要
作为一种新兴的无透镜相位恢复技术,叠层衍射成像大大提高了传统相位迭代恢复算法的收敛速度和抗噪能力,具有大视场、高对比度、高分辨率、无需标记、长工作距离、不丢失相位低频分量等优点,在多个领域得到了广泛的应用。介绍了量化相位显微成像领域的研究现状与最新进展,特别是传统叠层衍射成像术(CP)和傅里叶叠层衍射成像术(FP)的基本原理、技术进展及相关应用,着重介绍了快速FP及基于FP的荧光显微成像技术,总结了CP和FP目前面临的问题及未来的发展趋势。
Abstract
As one novel lensless phase retrieval technique, ptychography greatly improves the convergence speed and the anti-noise capability of traditional phase iterative retrieval algorithms. Ptychography features a lot of merits, such as large field of view, high contrast, high resolution, and label-free as well as long working distance without losing low frequency phase component, which has been widely applied in various regions. The research status and the latest advances in the field of quantitative phase microscopy imaging are introduced, especially the fundamentals, technique advances and related applications of conventional ptychography (CP) and Fourier ptychography (FP). The fast FP and the fluorescence microscopy imaging based on FP are mainly discussed and the current problems and future trends of CP and FP are also summarized.
参考文献

[1] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.

[2] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16: 9s-13s.

[3] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

[4] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

[5] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070-4075.

[6] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85-R101.

[7] Schnars U, Jueptner W. Digital holography[M]. Heidelberg: Springer Berlin Heidelberg, 2005.

[8] 左 超, 陈 钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43(6): 0609002.

    Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: A review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

[9] Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15): 1008-1010.

[10] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen (in German)[J]. Z Instrumentenkd, 1900, 20: 47-58.

[11] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.

[12] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 1971, 61(5): 656-660.

[13] 姚玉东, 刘 诚, 潘兴臣, 等. PIE成像方法技术现状及发展趋势[J]. 中国激光, 2016, 43(6): 0609001.

    Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese J Lasers, 2016, 43(6): 0609001.

[14] Teague M R. Deterministic phase retrieval: A Green′s function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[15] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586-2589.

[16] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s function[J]. Journal of the Optical Society of America A, 2010, 27(10): 2244-2251.

[17] Semichaevsky A, Testorf M. Phase-space interpretation of deterministic phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(11): 2173-2179.

[18] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088-2090.

[19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.

[20] 程 鸿, 章权兵, 韦 穗, 等. 基于强度传输方程的相位检索[J]. 光子学报, 2011, 40(10): 1566-1570.

    Cheng Hong, Zhang Quanbing, Wei Sui, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566-1570.

[21] 程 鸿, 沈 川, 张 成, 等. 强度传输方程和角谱迭代融合的相位检索算法[J]. 中国激光, 2014, 41(6): 0609001.

    Cheng Hong, Shen Chuan, Zhang Cheng, et al. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001.

[22] 王 潇, 毛 珩, 赵达尊. 基于光强传播方程的相位恢复[J]. 光学学报, 2007, 27(12): 2117-2122.

    Wang Xiao, Mao Heng, Zhao Dazun. Phase retrieval based on intensity transport equation[J]. Acta Optica Sinica, 2007, 27(12): 2117-2122.

[23] 薛斌党, 郑世玲, 姜志国. 完全多重网格法求解光强度传播方程的相位恢复方法[J]. 光学学报, 2009, 29(6): 1514-1518.

    Xue Bindang, Zheng Shiling, Jiang Zhiguo. Phase retrieval using transport of intensity equation solved by full multigrid method[J]. Acta Optica Sinica, 2009, 29(6): 1514-1518.

[24] 刘贝贝, 于瀛洁, 伍小燕, 等. 基于光强传输方程的相位恢复条件[J]. 光学 精密工程, 2015, 23(10z): 77-84.

    Liu Beibei, Yu Yingjie, Wu Xiaoyan, et al. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Optics and Precision Engineering, 2015, 23(10z): 77-84.

[25] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation Ⅱ: Applications to microlens characterization[J]. Optics Express, 2014, 22(15): 18310-18324.

[26] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.

[27] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

[28] Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Optics Letters, 2014, 39(3): 654.

[29] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.

[30] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.

[31] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20-32.

[32] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-246.

[33] Gerchberg R W, Saxton W O. Phase determination from image and diffraction plane pictures in electron-microscope[J]. Optik, 1971, 34(3): 275-284.

[34] Misell D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D, 1973, 6(1): L6-L9.

[35] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[36] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

[37] Ivanov V Y, Vorontsov M A, Sivokon V P. Phase retrieval from a set of intensity measurements: Theory and experiment[J]. Journal of the Optical Society of America A, 1992, 9(9): 1515-1524.

[38] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.

    Yang Guozhen, Gu Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.

[39] Eisebitt S, Lüning J, Schlotter W, et al. Lenless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

[40] Marchesini S, He H, Champman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 140101.

[41] Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]. SPIE, 1979, 207: 32-39.

[42] Guyon O. Limits of adaptive optics for high-contrast imaging[J]. The Astrophysical Journal, 2005, 629(1): 592-614.

[43] Zuo J M, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419-1421.

[44] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.

[45] 张静娟, 史祎诗, 司徒国海. 光学信息隐藏综述[J]. 中国科学院研究生院简报, 2006, 23(3): 289-296.

    Zhang Jingjuan, Shi Yishi, Situ Guohai. A survey on optical information hiding[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(3): 289-296.

[46] Shi Y S, Situ G H, Zhang J J. Multiple-image hiding in the Fresnel domain[J]. Optics Letters, 2007, 32(13): 1914-1916.

[47] Fienup J R, Wacherman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907.

[48] Lu G, Zhang Z, Francis T S, et al. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Optical Engineering, 1994, 33(2): 548-555.

[49] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

[50] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

[51] Faulkner H M L, Rodenburg J M. Movable aperture lenless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

[52] Li P, Batey D, Edo T, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158: 1-7.

[53] Fu J, Li P. A general phase retrieval algorithm based on a ptychographical iterative engine for coherent diffractive imaging[J]. Chinese Physics B, 2013, 22(1): 014024.

[54] Marrison J, Raty L, Marriott P, et al. Ptychography-A label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 2013, 3: 2369.

[55] Pan X C, Veetil S P, Liu C, et al. High-contrast imaging for weakly diffracting specimens in coherent diffraction imaging[J]. Chinese Optics Letters, 2013, 11(2): 021103.

[56] Shi Y S, Wang Y L, Zhang S G. Generalized ptychography with diverse probes[J]. Chinese Physics Letters, 2013, 30(5): 054203.

[57] 王 东, 马迎军, 刘 泉, 等. 可见光域多波长叠层衍射成像的实验研究[J]. 物理学报, 2015, 64(8): 084203.

    Wang Dong, Ma Yingjun, Liu Quan, et al. Experimental study on multi-wavelength ptychographic imaging in visible light band[J]. Acta Physica Sinica, 2015, 64(8): 084203.

[58] Wang Y L, Li T, Gao Q K, et al. Application of diffractive optical elements for controlling the light beam in ptychography[J]. Optical Engineering, 2013, 52(9): 091720.

[59] 王雅丽, 史祎诗, 李 拓, 等. 可见光域叠层成像中照明光束的关键参量研究[J]. 物理学报, 2013, 62(6): 064206.

    Wang Yali, Shi Yishi, Li Tuo, et al. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band[J]. Acta Physica Sinica, 2013, 62(6): 064206.

[60] Maiden A M, Humphry M J, Zhang F C, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

[61] Maiden M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

[62] Godden T M, Suman R, Humphry M J, et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.

[63] 潘 安, 张晓菲, 王 彬, 等. 厚样品三维叠层衍射成像的实验研究[J]. 物理学报, 2016, 65(1): 014204.

    Pan An, Zhang Xiaofei, Wang Bin, et al. Experimental study on three-dimensional ptychography for thick sample[J]. Acta Physics Sinica, 2016, 65(1): 014204.

[64] 陈 文, 蒋志龙, 刘 诚, 等. 双光束照明3PIE层析成像[J]. 光学学报, 2016, 36(8): 0811002.

    Chen Wen, Jiang Zhilong, Liu Cheng, et al. Depth resolved imaging by 3PIE with dual-beam illumination[J]. Acta Optica Sinica, 2016, 36(8): 0811002.

[65] Shi Y, Li T, Wang Y, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9): 1425-1427.

[66] Shi Y, Wang Y, Li T, et al. Ptychographical imaging algorithm with a single random phase encoding[J]. Chinese Physics Letters, 2013, 30(7): 074203.

[67] Claus D, Robinson D J, Chetwynd D G, et al. Dual wavelength optical metrology using ptychography[J]. Journal of Optics, 2013, 15(3): 035702.

[68] Claus D, Maiden A M, Zhang F, et al. Quantitative phase contrast optimised cancerous cell differentiation via ptychography[J]. Optics Express, 2012, 20(9): 9911-9918.

[69] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.

[70] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

[71] Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3(2): 730.

[72] Holler M, Diaz A, Guizar-sicairos M, et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 2014, 4: 3857.

[73] Wang H, Liu C, Pan X, et al. The application of ptychography in the field of high power laser[C]. SPIE, 2015, 9255: 925534.

[74] 郑 晨, 何小亮, 刘 诚, 等. 关于轴向距离误差对PIE成像质量影响的研究[J]. 光学学报, 2014, 34(10): 1011003.

    Zheng Chen, He Xiaoliang, Liu Cheng, et al. A study on the influence of the axial distance error to the image quality of the ptychographic iterative engine[J]. Acta Optica Sinica, 2014, 34(10): 1011003.

[75] 王宝升, 高淑梅, 王继成, 等. 电荷耦合器件饱和效应对PIE成像质量的影响[J]. 光学学报, 2013, 33(6): 0611001.

    Wang Baosheng, Gao Shumei, Wang Jicheng, et al. Influence of charge coupled device saturation on PIE imaging[J]. Acta Optica Sinica, 2013, 33(6): 0611001.

[76] 刘 诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像[J]. 物理学报, 2013, 62(18): 184204.

    Liu Cheng, Pan Xingchen, Zhu Jianqiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18): 184204.

[77] Pan X, Liu C, Zhu J. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 2013, 103(17): 171105.

[78] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

[79] Zheng G, Ou X, Horstmeyer R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy[J]. Optics Express, 2013, 21(13): 15131-15143.

[80] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.

[81] Zheng G. Breakthroughs in Photonics 2013: Fourier ptychographic imaging[J]. IEEE Photonics Journal, 2014, 6(2): 1-7.

[82] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26): 33822-33835.

[83] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2): 26010.

[84] Zheng G, Ou X, Yang C.0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 2013, 5(1): 1-8.

[85] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2): 574-579.

[86] 谢宗良, 马浩统, 任 戈, 等. 小孔扫描傅里叶叠层成像的关键参量研究[J]. 光学学报, 2015, 35(10): 1011002.

    Xie Zongliang, Ma Haotong, Ren Ge, et al. Research on the key parameters of aperture-scanning Fourier ptychography[J]. Acta Optica Sinica, 2015, 35(10): 1011002.

[87] Kuang C, Ma Y, Zhou R, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(21): 26999-27010.

[88] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: Principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.

[89] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599.

[90] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2): 104-111.

[91] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5): 1326-1329.

[92] Tian L, Liu Z, Yeh L, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10): 904-911.

[93] Chung J, Lu H, Ou X, et al. Wide-field Fourier ptychographic microscopy using laser illumination source[J]. Biomedical Optics Express, 2016, 7(11): 4787-4802.

[94] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

[95] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.

[96] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.

[97] Chakrova N, Heintzmann R, Rieger B, et al. Studying different illumination patterns for resolution improvement in fluorescence microscopy[J]. Optics Express, 2015, 23(24): 31367-31383.

[98] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4): 1336-1350.

[99] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14): 15765-15781.

[100] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23): 6648-6651.

[101] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4): 4856-4866.

[102] Hoppe W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference[J]. Acta Crystallographica Section A, 1969, 25: 495-501.

[103] Hoppe W, Strube G. Diffraction inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences[J]. Acta Crystallographica Section A, 1969, 25: 502-507.

[104] Hoppe W. Diffraction in homogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects[J]. Acta Crystallographica Section A, 1969, 25: 508-514.

[105] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150(7): 87-184.

[106] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

[107] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

[108] Sang X, LeBeau J M. Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge[J]. Ultramicroscopy, 2014, 138: 28-35.

[109] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11): 13592-13606.

[110] Beckers M, Senkbeil T, Gorniak T, et al. Drift correction in ptychographic diffractive imaging[J]. Ultramicoscopy, 2013, 126: 44-47.

[111] Hurst A C, Edo T B, Walther T, et al. Probe position recovery for ptychographical imaging[C]. Journal of Physics: Conference Series, 2010, 241: 012004.

[112] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.

[113] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

[114] Waller L. Phase imaging with partially coherent light[C]. SPIE, 2013, 8589: 85890K.

[115] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

[116] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicoscopy, 2014, 138: 13-21.

[117] 潘 安, 王 东, 史祎诗, 等. 多波长同时照明的菲涅耳域非相干叠层衍射成像[J]. 物理学报, 2016, 65(12): 124201.

    Pan An, Wang Dong, Shi Yishi, et al. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination[J]. Acta Physica Sinica, 2016, 65(12): 124201.

[118] Deng J, Nashed Y S, Chen S, et al. Continuous motion scan ptychography: Characterization for increased speed in coherent X-ray imaging[J]. Optics Express, 2015, 23(5): 5438-5451.

[119] Deng J, Vine D J, Chen S, et al. Opportunities and limitations for combined fly-scan ptychography and fluorescence microscopy[C]. SPIE, 2015, 9592: 95920U.

[120] Li P, Batey D J, Edo T B, et al. Multiple mode X-ray ptychography using a lens and a fixed diffuser optic[J]. Journal of Optics, 2016, 18(5): 054008.

[121] Li P, Edo T B, Batey D J, et al. Breaking ambiguities in mixed state ptychography[J]. Optics Express, 2016, 24(8): 9038-9052.

[122] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10): 1263-1275.

[123] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2015, 3(1): 9-14.

[124] Sidorenko P, Pauwels E, Sabach S, et al. Single-shot ptychography & sparsity-based subwavelength ptychography[C]. Frontiers in Optics, 2015.

[125] Colomb T, Dahlgren P, Beghuin D, et al. Polarization imaging by use of digital holograohy[J]. Applied Optics, 2002, 41(1): 27-37.

[126] Kühn J, Colomb T, Montfort F, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition[J]. Optics Express, 2007, 15(12): 7231-7242.

[127] Zhang J, Wang Z, Li T, et al. 3D object hiding using three-dimensional ptychography[J]. Journal of Optics, 2016, 18(9): 095701.

[128] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

[129] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1): 338-358.

[130] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5): 6171-6080.

[131] Yeh L, Dong J, Zhong J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26): 33214-33240.

[132] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5): 053044.

[133] Candes E J, Li X, Soltanolkotabi M. Phase retrieval via Wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2015, 61(4): 1985-2007.

[134] 孙佳嵩, 张玉珍, 陈 钱, 等. 傅里叶叠层显微成像技术: 理论、发展和应用[J]. 光学学报, 2016, 36(10): 1026009.

    Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy (FPM): Theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10): 1026009.

[135] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

[136] Bian L, Suo J, Chung J, et al. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient[J]. Scientific Reports, 2016, 6: 27384.

[137] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

[138] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6): 1757-1767.

[139] Dong S, Bian Z, Shiradkar R, et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 2014, 22(5): 5455-5464.

[140] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403.

[141] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 1982, 217(4566): 1252-1255.

[142] Wilson T. Confocal microscopy[M]. London: Academic Press, 1990: 1-64.

[143] Pawley J. Handbook of biological confocal microscopy[M]. [S.l.]: Springer, 2010.

[144] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

[145] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

[146] Heintzmann R, Gustafsson M G L. Subdiffraction resolution in continuous samples[J]. Nature Photonics, 2009, 3(7): 362-364.

[147] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

[148] Jost A, Heintzmann R. Superresolution multidimensional imaging with structured illumination microscopy[J]. Annual Review of Materials Research, 2013, 43(1): 261-282.

[149] Hoffman Z R, DiMarzio C A. Structured illumination microscopy using random intensity incoherent reflectance[J]. Journal of Biomedical Optics, 2013, 18(6): 061216.

[150] Dong S, Guo K, Jiang S, et al. Recovering higher dimensional image data using multiplexed structured illumination[J]. Optics Express, 2015, 23(23): 30393-30398.

[151] Dong S, Nanda P, Guo K, et al. Incoherent Fourier ptychographic photography using structured light[J]. Photonics Research, 2015, 3(1): 19-23.

[152] Min J, Jang J, Keum D, et al. Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery[J]. Scientific Reports, 2013, 3: 2075.

[153] Ayuk R, Giovannini H, Jost A, et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm[J]. Optics Letters, 2013, 38(22): 4723-4726.

[154] Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6(5): 312-315.

[155] Qian J, Lei M, Dan D, et al. Full-color structured illumination optical sectioning microscopy[J]. Scientific Reports, 2015, 5: 14513.

[156] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3: 1116.

[157] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.

[158] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.

潘安, 张艳, 赵天宇, 汪召军, 但旦, 史祎诗, 姚保利. 基于叠层衍射成像术的量化相位显微成像[J]. 激光与光电子学进展, 2017, 54(4): 040001. Pan An, Zhang Yan, Zhao Tianyu, Wang Zhaojun, Dan Dan, Shi Yishi, Yao Baoli. Quantitative Phase Microscopy Imaging Based on Ptychography[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!