光学学报, 2017, 37 (3): 0318010, 网络出版: 2017-03-08   

多色单分子定位超分辨显微成像术 下载: 1019次

Multicolor Single-Molecule Localization Super-Resolution Microscopy
作者单位
1 南开大学物理科学学院, 泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
2 南开大学生物治疗协同创新中心, 天津 300457
3 山西大学极端光学协同创新中心, 山西 太原 030006
摘要
多色成像作为超分辨成像技术的重要延伸, 极大地增强了人们研究亚细胞结构定位与交互关系的能力, 从而有助于研究者深入理解细胞内复杂的生命现象与过程。基于单分子定位超分辨显微成像术(SMLM)工作原理的特殊性, 已实现了激发依赖、激活依赖、分光依赖等数种有特点的多色成像方法。介绍6种主要的多色单分子定位超分辨显微成像技术, 从分色能力、光谱窜扰、数据采集效率等角度分析了各方法的优缺点, 并讨论了与多色成像相关的细胞固定方法, 帮助研究人员根据自身实验需求选择合适可靠的多色成像手段研究相应的科学问题。
Abstract
Multicolor imaging is an important extension of super-resolution microscopy, which greatly enhances the investigation ability of the relationship between localization and interaction of sub-cellular structures. Therefore, it is beneficial for researchers to go deep into understanding of complicated biological phenomena and processes in cells. Based on the special working principle of single-molecule localization super-resolution microscopy (SMLM), several characteristic multicolor imaging technologies including excitation-dependent, activation-dependent, split-dependent multicolor SMLM and so on are accomplished. In this paper, we analyze the advantages and disadvantages among six main multicolor SMLM from the views of color separation ability, spectrum cross-talk and data collection efficiency. In addition, we discuss the cell fixation method in relation to the multicolor imaging. This review may be helpful for researchers to seek suitable and reliable multicolor imaging methods to study corresponding scientific problem according to their own experimental conditions.
参考文献

[1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

[2] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[C]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210.

[3] D′Este E, Kamin D, Gttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 2015, 10(8): 1246-1251.

[4] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

[5] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[C]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

[6] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

[7] Shtengel G, Galbraith J A, Galbraith C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[C]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3125-3130.

[8] Shroff H, White H, Betzig E. Photoactivated localization microscopy (PALM) of adhesion complexes[J]. Current Protocols in Cell Biology, 2008, 4: 4-21.

[9] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.

[10] Heilemann M, van de Linde S, Schüttpelz M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie (International Edition), 2008, 47(33): 6172-6176.

[11] Zhuang X. Nano-imaging with STORM[J]. Nature Photonics, 2009, 3(7): 365-367.

[12] Xu K, Shim S H, Zhuang X. Super-resolution imaging through stochastic switching and localization of single molecules: An overview[M]. Far-field Optical Nanoscopy, Berlin: Springer, 2015: 27-64.

[13] 姚保利, 雷 铭, 薛 彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607-1618.

    Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618.

[14] 夏 鹏, 窦 震, 姚雪彪. 超高分辨率显微技术研究进展[J]. 生命的化学, 2015, 35(3): 430-437.

    Xia Peng, Dou Zhen, Yao Xuebiao. Progress of super-resolution microscopy[J]. Chemistry of Life, 2015, 35(3): 430-437.

[15] Li D, Shao L, Chen B C, et al. Advanced imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): aab3500.

[16] Bhme M A, Beis C, Reddy-Alla S, et al. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel-vesicle coupling[J]. Nature Neuroscience, 2016, 19(10): 1311-1320.

[17] French J B, Jones S A, Deng H, et al. Spatial colocalization and functional link of purinosomes with mitochondria[J]. Science, 2016, 351(6274): 733-737.

[18] Huang F, Sirinakis G, Allgeyer E S, et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 2016, 166(4): 1028-1040.

[19] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actincytoskeleton[J]. Nature Methods, 2012, 9(2): 185-188.

[20] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 1995, 20(3): 237-239.

[21] Dickson R M, Cubitt A B, Tsien R Y, et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358.

[22] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.

[23] Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[C]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51): 20308-20313.

[24] Subach F V, Patterson G H, Manley S, et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy[J]. Nature Methods, 2009, 6(2): 153-159.

[25] Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 2011, 8(12): 1027-1036.

[26] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6): 499-508.

[27] Leterrier C, Potier J, Caillol G, et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold[J]. Cell Reports, 2015, 13(12): 2781-2793.

[28] Lippincott-Schwartz J, Patterson G H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging[J]. Trends in Cell Biology, 2009, 19(11): 555-565.

[29] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753.

[30] Bates M, Dempsey G T, Chen K H, et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection[J]. Chem Phys Chem, 2012, 13(1): 99-107.

[31] Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7): 743-748.

[32] Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain[J]. Neuron, 2010, 68(5): 843-856.

[33] Tam J, Cordier G A, Borbely J S, et al. Cross-talk-free multi-color STORM imaging using a single fluorophore[J]. PLoS One, 2014, 9(7): e101772.

[34] Bossi M. Flling J, Belov V N, et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 2008, 8(8): 2463-2468.

[35] Kim D, Curthoys N M, Parent M T, et al. Bleed-through correction for rendering and correlation analysis in multi-colour localization microscopy[J]. Journal of Optics, 2013, 15(9): 094011.

[36] Baddeley D, Crossman D, Rossberger S, et al. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues[J]. PLoS One, 2011, 6(5): e20645.

[37] Lampe A, Haucke V, Sigrist S J, et al. Multi-colour direct STORM with red emitting carbocyanines[J]. Biology of the Cell, 2012, 104(4): 229-237.

[38] Gunewardene M S, Subach F V, Gould T J, et al. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells[J]. Biophysical Journal, 2011, 101(6): 1522-1528.

[39] Testa I, Wurm C A, Medda R, et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength[J]. Biophysical Journal, 2010, 99(8): 2686-2694.

[40] Zhang Z, Kenny S J, Hauser M, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 2015, 12(10): 935-938.

[41] Mlodzianoski M J, Curthoys N M, Gunewardene M S, et al. Super-resolution imaging of molecular emission spectra and single molecule spectral fluctuations[J]. PLoS One, 2016, 11(3): e0147506.

[42] Dong B, Almassalha L, Urban B E, et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 2016, 7: 12290.

[43] Shechtman Y, Weiss L E, Backer A S, et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 2016, 10: 590-595.

[44] Pavani S R P, Thompson M A, Biteen J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[C]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2995-2999.

[45] Gahlmann A, Ptacin J L, Grover G, et al. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions[J]. Nano Letters, 2013, 13(3): 987-993.

[46] Shechtman Y, Weiss L E, Backer A S, et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 2015, 15(6): 4194-4199.

[47] Allen J R, Ross S T, Davidson M W. Sample preparation for single molecule localization microscopy[J]. Physical Chemistry Chemical Physics, 2013, 15(43): 18771-18783.

[48] Whelan D R, Bell T D. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters[J]. Scientific Reports, 2015, 5: 7924.

潘雷霆, 胡芬, 张心正, 许京军. 多色单分子定位超分辨显微成像术[J]. 光学学报, 2017, 37(3): 0318010. Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Multicolor Single-Molecule Localization Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318010.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!