Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical, Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, P. R. China
2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, P. R. China
3 College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou 310027, P. R. China
Fluorescence imaging in the second near-infrared window (NIR-II, 900–1880nm) with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution. However, the traditional NIR-II fluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal efficiency, as well as difficultly to adjust. Two types of upgraded NIR-II fluorescence confocal microscopes, sharing the same pinhole by excitation and emission focus, leading to higher confocal efficiency, are built in this work. One type is fiber-pinhole-based confocal microscope applicable to CW laser excitation. It is constructed for fluorescence intensity imaging with large depth, high stabilization and low cost, which could replace multiphoton fluorescence microscopy in some applications (e.g., cerebrovascular and hepatocellular imaging). The other type is air-pinhole-based confocal microscope applicable to femtosecond (fs) laser excitation. It can be employed not only for NIR-II fluorescence intensity imaging, but also for multi-channel fluorescence lifetime imaging to recognize different structures with similar fluorescence spectrum. Moreover, it can be facilely combined with multiphoton fluorescence microscopy. A single fs pulsed laser is utilized to achieve up-conversion (visible multiphoton fluorescence) and down-conversion (NIR-II one-photon fluorescence) excitation simultaneously, extending imaging spectral channels, and thus facilitates multi-structure and multi-functional observation.
Self-confocal fiber-pinhole air-pinhole multi-channel fluorescence lifetime imaging multi-color imaging 
Journal of Innovative Optical Health Sciences
2024, 17(1): 2350025
作者单位
摘要
1 海南省生物医学工程重点实验室, 海南大学 生物医学工程学院, 海南 海口 570100
2 海南大学 计算机科学与技术学院, 海南 海口 570100
数字病理凭借其便捷的存储、管理、浏览、传输等特点,为远程病理会诊及联合会诊带来了新契机。然而,显微镜的视场有限,在保证分辨率的前提下,无法兼顾全景成像。全景数字病理的提出弥补了这一缺陷,其在保证分辨率的同时可兼顾全景成像。但单张切片仅能实现单靶点检测,而疾病诊断需同时观测多个靶点的表达情况。近年来,多靶点全景数字病理技术发展迅速,因其在药物研发、临床科研以及基础科研等领域有巨大的应用潜力而广受关注。该系统凭借视场大、颜色多、通量高的特点,可在短时间内原位检测整张组织切片上的多种生物标记物的表达情况,借以识别组织上每个细胞表型、丰度、状态及其相互关系。本文首先梳理了数字病理、全景数字病理以及多靶点全景数字病理的发展过程,并简要介绍发展过程中技术的更新迭代,以及发展多靶点全景数字病理的重要性。然后,分别从生物样本准备、多色光学成像以及图像处理3个部分重点介绍多靶点全景数字病理。接下来,阐述了多靶点全景数字病理在肿瘤微环境与肿瘤分子分型等生物医学领域的应用情况。最后,对多靶点全景数字病理的技术优势、目前面临的挑战及其未来的发展趋势进行了总结。
多靶点全景数字病理 生物标记物 多色成像 图像处理 multi-target panoramic digital pathology biomarkers multi-color imaging image processing 
中国光学
2022, 15(6): 1258
作者单位
摘要
1 南开大学物理科学学院, 泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
2 南开大学生物治疗协同创新中心, 天津 300457
3 山西大学极端光学协同创新中心, 山西 太原 030006
多色成像作为超分辨成像技术的重要延伸, 极大地增强了人们研究亚细胞结构定位与交互关系的能力, 从而有助于研究者深入理解细胞内复杂的生命现象与过程。基于单分子定位超分辨显微成像术(SMLM)工作原理的特殊性, 已实现了激发依赖、激活依赖、分光依赖等数种有特点的多色成像方法。介绍6种主要的多色单分子定位超分辨显微成像技术, 从分色能力、光谱窜扰、数据采集效率等角度分析了各方法的优缺点, 并讨论了与多色成像相关的细胞固定方法, 帮助研究人员根据自身实验需求选择合适可靠的多色成像手段研究相应的科学问题。
显微 荧光成像 单分子定位显微成像 多色成像 随机光学重建显微术 光敏定位显微术 
光学学报
2017, 37(3): 0318010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!