量子电子学报, 2017, 34 (1): 32, 网络出版: 2017-02-09   

近红外高速皮秒激光器的研制

Design of near infrared high-speed picosecond lasers
作者单位
1 安徽问天量子科技股份有限公司,安徽省量子安全工程技术研究中心, 安徽 芜湖 241000
2 中国科学技术大学,中国科学院量子信息重点实验室, 安徽 合肥 230026
摘要
新兴的量子密码技术对激光器提出了新的要求。为了满足要求,设计了一种高速内调制 半导体激光器。利用专门设计的脉冲整形电路,将输入的触发信号经过扇出电路分成两路,分 别经过延时电路产生不同的延时,利用逻辑电路将两路信号转换成窄脉冲信号,通过射频放大 电路驱动激光器发光,使输出光脉冲频率达到1 GHz, 脉冲宽度小于24 ps, 时间抖动小于12 ps, -10 dB谱线宽度仅0.7 nm, 输出光波长和功率稳定性高。所研制激光器可满足频率达1 GHz的高速量子密钥分配的需求。
Abstract
The emerging quantum cryptography technology puts forward new requirements for lasers. To meet the requirements, an internal modulated semiconductor laser with high speed is developed. By using a special pulse shaping circuit designed, an input trigger pulse is divided into two pulses by a fan-out circuit. The two pulses pass through a delay circuit to produce different delay. The two signals are turned into a short pulse signal by a logic circuit. An RF amplifying circuit is used to drive a laser diode. The output laser pulse frequency can reach 1 GHz, the pulse width is less than 24 ps, time jitter is less than 12 ps and the -10 dB spectrum width is only 0.7 nm. Wavelength and power of the output laser have high stability. The laser designed can meet the requirements of a high-speed quantum key distribution with 1 GHz frequency.
参考文献

[1] Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984: 175-179.

[2] Kurtsiefer C, Zarda P, Halder M, et al. Quantum cryptography: A step towards global key distribution[J]. Nature, 2002, 419(6906): 450.

[3] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Phys. Rev. Lett., 2003, 91(5): 057901.

[4] Wang Shuang, Chen Wei, Guo Junfu, et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber[J]. Opt. Lett., 2012, 37(6): 1008-1010.

[5] Curty M, Xu F, et al. Finite-key analysis for measurement-device-independent quantum key distribution[J]. Nature Comm., 2013, 5(4): 643-648.

[6] Mo Xiaofan, Zhu Bing, Han Zhengfu, et al. Faraday-Michelson system for quantum cryptography[J]. Opt. Lett., 2005, 30(30): 2632-2634.

[7] Yuan Z L, Dixon A R, et al. Gigahertz quantum key distribution with InGaAs avalanche photodiodes[J]. Appl. Phys. Lett., 2008, 92(20): 201104.

[8] Zhao Yi, Qi Bin, Ma Xiongfeng, et al. Experimental quantum key distribution with decoy states[J]. Phys. Rev. Lett., 2006, 9(7): 070502.

[9] Yin Zhenqiang, Han Zhengfu, Chen Wei, et al. Experimental decoy state quantum key distribution over 120 km fibre[J]. Chin. Phys. Lett., 2008, 25(10): 3547-3550.

[10] Bunandar D, Zhang Z, et al. Practical high-dimensional quantum key distribution with decoy states[J]. Phys. Rev. A, 2014, 91: 022336.

刘云, 吕利影, 苗春华, 尹凯, 刘婧婧, 何德勇. 近红外高速皮秒激光器的研制[J]. 量子电子学报, 2017, 34(1): 32. LIU Yun, LV Liying, MIAO Chunhua, YIN Kai, LIU Jingjing, HE Deyong. Design of near infrared high-speed picosecond lasers[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 32.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!