大气与环境光学学报, 2018, 13 (5): 355, 网络出版: 2018-10-06  

有机酸促进大气气溶胶成核机理研究进展

Research Progress of Atmospheric Aerosol Nucleation Mechanism Promoted by Organic Acids
作者单位
1 中国科学院安徽光学精密机械研究所,安徽 合肥 230031
2 中国气象局气象干部培训学院安徽分院,安徽 合肥 230061
摘要
大气中有机成分种类繁多,结构复杂,有机酸作为大气环境各相中含量最丰富的有机物种之一备受关注,最近的实验研究表明,部分芳香族 有机酸能够促进硫酸-水团簇的成核及生长。理论计算也表明在有机酸的存在下,一些小分子有机酸与硫酸通过氢键的相互作用形成非均 相的团簇降低了成核壁垒,从而促进团簇的形成,对新粒子的成核产生具有重要促进作用。鉴于有机酸对大气气溶胶成核机理研究具有重 要的意义,对其近些年在实验和理论上的进展进行了回顾,并对未来前景作了展望。
Abstract
Organic acid have been widely identified as common components in atmospheric particulate matter, which is important for the investigation of atmospheric aerosol nucleation mechanism. Experimental results show that organic acids can promote the growth of sulfuric acid-water clusters. The theoretical calculations also show that the interaction of organic acids with sulfuric acid through hydrogen bonds in the presence of organic acids forms heterogeneous clusters, which can promote the formation of clusters by reducing the nucleation barriers to strengthen the formation of new particles. The influence of organic acids on the nucleation process of aerosols is reviewed, and a prospect for the development is given.
参考文献

[1] Whitby K T. The physical characteristics of sulfur aerosols[J].Atmospheric Environment(1967), 1978, 12(1): 135-159.

[2] Hussein T, Maso M D, Petaja T,et al. Evaluation of an automatic algorithm for fitting the particle number size distributions[J]. Boreal Environment Research, 2005, 10(5): 337-355.

[3] Merikanto J, Spracklen D V, Mann G W,et al. Impact of nucleation on global CCN[J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616.

[4] Yu F, Wang Z, Luo G,et al. Ion-mediated nucleation as an important global source of tropospheric aerosols[J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2537-2554.

[5] Leaitch W R, Bottenheim J W, Biesenthal T A,et al. A case study of gas-to-particle conversion in an eastern canadian forest[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8095-8111.

[6] O’Dowd C, McFiggans G, Creasey D,et al. On the photochemical production of new particles in the coastal boundary layer[J]. Geophysical Research Letters, 1999, 2(12): 1707-1710.

[7] Schillawski R D, Baumgardner D. A study of new particle formation and growth involving biogenic[J].Journal of Geophysical Research, 1998, 103(D13): 16385-16396.

[8] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications[J].Atmospheric Environment, 2007, 41(10): 2183-2201.

[9] Solomon S, Qin D, Manning M,et al. IPCC, Climate Change 2007: The Physical Scientific Basis[M]. New York: Cambridge University Press, 2007.

[10] Zhang R, Khalizov A, Wang L,et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3): 1957-2011.

[11] Weber R J, McMurry P H, Mauldin R L,et al. New particle formation in the remote troposphere: A comparison of observations at various sites[J]. Geophysical Research Letters, 1999, 2(3): 307-310.

[12] Napari I, Kulmala M, Vehkamki H. Ternary nucleation of inorganic acids, ammonia, and water[J].The Journal of Chemical Physics, 2002, 117(18): 8418-8425.

[13] Yu F Q, Turco R. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms[J].Atmospheric Chemistry and Physics, 2008, 8: 6085-6102.

[14] Vuollekoski H, Kerminen V-M, Anttila T,et al. Iodine dioxide nucleation simulations in coastal and remote marine environments[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): D02206.

[15] Kulmala M, Kerminen, V M. On the formation and growth of atmospheric nanoparticles[J].Atmospheric Research, 2008, 90(2-4): 132-150.

[16] Smith J N, Dunn M J, VanReken T M,et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth[J]. Geophysical Research Letters, 2008, 35(4): L04808.

[17] Fiedler V, Dal Maso M, Boy M,et al. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe[J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1773-1785.

[18] Boy M, Rannik U, Lehtinen K E J,et al. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics[J]. Journal of Geophysical Research, 2003, 108(D21): 4667.

[19] Nozière B, Kalberer M, Claeys M,et al. The Molecular identification of organic compouds in the atomsphere: State of the art and challenges[J]. Chemical Reviews, 2015, 115(10): 3919-3983.

[20] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review[J].Atmospheric Environment, 1996, 30(24): 4233-4249.

[21] Souza S R, Vasconcellos P C, Carvalho L R F. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil[J].Atmospheric Environment, 1999, 33(16): 2563-2574

[22] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol[J].Atmospheric Environment, 2004, 38(20): 3285-3303.

[23] Fan J, Zhang R. Atmospheric oxidation mechanism of isoprene[J].Environmental Chemistry, 2004, 1(3): 140-149.

[24] Zhang R. Getting to the critical nucleus of aerosol formation[J].Science, 2010, 328(5984): 1366-1367.

[25] Yi T, Li H, Weng T,et al. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography[J]. Analytica Chimica Acta, 2008, 62(1): 78-88.

[26] Pio C A, Silva P A, Cerqueira M A,et al. Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees[J]. Atomspheric Enviroment, 2005, 39(10): 1817-1827.

[27] Forstner H J L, Flagan R C, Seinfeld J H. Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition[J].Environmental Science and Technology, 1997, 31(5): 1345-1358.

[28] Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene[J].Environmental Science and Technology, 2001, 35(18): 3626-3639.

[29] O’Dowd C D, Aalto P, Hameri K,et al. Aerosol formation: Atmospheric particles from organic vapours[J]. Nature, 2002, 41(6880): 497-498.

[30] Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests[J].Nature, 1998, 395: 683-686.

[31] Ehn M, Junninen H, Petj T,et al. Composition and temporal behavior of ambient ions in the boreal forest[J]. Atmospheric Chemistry and Physics, 2010, 10(17): 8513-8530.

[32] Junninen H, Ehn M, Petj T,et al. A high- resolution mass spectrometer to measure atmospheric ion composition[J]. Atmospheric Measurement Techniques, 2010, 3(4): 1039-1053.

[33] Jordan A, Haidacher S, Hanel G,et al, A high resolution and high sensitivity proton-transfer-reactiontime-of-flight mass spectrometer (PTR-TOF-MS)[J]. International Journal of Mass Spectrometry, 2009, 28(2): 122-128.

[34] Vanhanen J, Mikkil J, Lehtipalo K,et al. Particle size magnifier for nano-CN detection[J]. Aerosol Science and Technology, 2011, 45(4): 533-542.

[35] Kulmala M, Riipinen I, Sipila M,et al. Toward direct measurement of atmospheric nucleation[J]. Science, 2007, 318(5847): 89-92.

[36] Wang S C, Flagan R C. Scanning electrical mobility spectrometer[J].Aerosol Science and Technology, 1990, 13(2): 230-240.

[37] Yue D L, Hu M, Wu Z J,et al. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): 1159-1171.

[38] Yue D L, Hu M, Zhang R Y,et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing[J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4953-4960.

[39] Zhang R Y, Suh I, Zhao J.et al. Atmospheric new particle formation enhanced by organic acids[J]. Science, 2004, 304(5676): 1487-1490.

[40] Zhang R Y, Wang L, Khalizov A F,et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution[J]. Proceedings of the National Academy of Science of the United States of America, 2009, 10(42): 17650-17654.

[41] Hoffmann T, Bandur R, Marggraf U,et al. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes[J]. Journal of Geophysical Research, 1998, 103(D19): 25569-25578.

[42] Zhao J, Khalizov A, Zhang R,et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors[J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689.

[43] Nadykto A B, Yu F Q, Strong hydrogen bonding between atmospheric nucleation precursors and common organics[J].Chemical Physics Letters, 2007, 435(1): 14-18.

[44] McGraw R, Wu D T. Kinetic extensions of the nucleation theorem[J].The Journal of Chemical Physics, 2003, 118(20): 9337-9347.

[45] McGraw R, Zhang R Y. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system[J].The Journal of Chemical Physics, 2008, 128(6): 064508.

[46] Wang L, Khalizov A F, Zheng J,et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics[J]. Nature Geoscience, 2010, 3(4): 238-242.

[47] Nadykto A B, Yu F. Strong hydrogen bonding between atmospheric nucleation precursors and common organics[J].Chemical Physics Letters, 2007, 435(1): 14-18.

[48] Nadykto A B, Du H, Yu F. Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer[J].Vibrational Spectroscopy, 2007, 44(2): 286-296.

[49] Xu Y, Nadykto A B, Yu F,et al. Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors[J]. Journal of Molecular Structure: THEOCHEM, 2010, 951(1): 28-33.

[50] Xu Y, Nadykto A B, Yu F,et al. Interaction between common organic acids and trace nucleation species in the Earth’s Atmosphere[J]. The Journal of Physical Chemistry A, 2010, 114(1): 387-396.

[51] Fan J W, Zhang R Y, Collins D,et al. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas[J]. Geophysical Research Letters, 2006, 33(15): L15802.

[52] Kurtén T, Sundberg M R, Vehkamaki H,et al. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate[J]. Journal of Physical Chemistry A, 2006, 110(22): 7178-7188.

[53] Xu W, Zhang R Y. Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors[J].The Journal of Physical Chemistry A, 2012, 11(18): 4539-4550.

[54] Xu W, Zhang R Y. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids[J].The Journal of Chemical Physics, 2013, 139(6): 53-58.

[55] Zhu Y P, Liu Y R, Huang T,et al. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid[J]. The Journal of Physical Chemistry A, 2014, 118(36): 7959-7974.

张杨, 文辉, 林晓晓, 陈娇. 有机酸促进大气气溶胶成核机理研究进展[J]. 大气与环境光学学报, 2018, 13(5): 355. ZHANG Yang, WEN Hui, LIN Xiaoxiao, CHEN Jiao. Research Progress of Atmospheric Aerosol Nucleation Mechanism Promoted by Organic Acids[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!