作者单位
摘要
1 巢湖学院电子工程学院, 安徽 合肥238000
2 安徽省气象台,安徽 合肥230031
风场对于天气形势的演变和预报至关重要。基于风云四号A星干涉式大气垂直探测仪(GIIRS)中波通道资料和ERA5风场资料,采用LightGBM进行大气三维风场反演研究。首先,构建模型特征变量。GIIRS通道最优选择采用二步特征选择法:(1)建立GIIRS通道黑名单;(2)采用置换特征重要性(Permutation Feature Importance,PFI)方法选择特征变量,在形成通道最优子集的基础上,构建含有时空信息的特征变量。其次,构建基于LightGBM的三维风场反演方法。最后,基于台风“利奇马”期间的GIIRS加密资料开展了LightGBM超参数优化和相关反演试验。结果表明,相对于ERA5风场资料,测试集中风场U和V分量的均方根误差(Root Mean Square Error,RMSE)分别小于1 m/s和15 m/s。本文中的二步特征选择法能够实现GIIRS通道的动态最优选择。
大气风场反演 特征选择 台风“利奇马” FY-4A/GIIRS FY-4A/GIIRS atmospheric wind field retrieval feature selection LightGBM LightGBM Typhoon “Lekima” 
红外
2023, 44(7): 0039
王根 1,2,3,*邵立瑛 1丁卫东 1陈娇 1[ ... ]谢菲 1
作者单位
摘要
1 安徽省气象台 大气科学与卫星遥感安徽省重点实验室,安徽 合肥230031
2 中亚大气科学研究中心,新疆 乌鲁木齐 830002
3 安徽省气象科学研究所,安徽 合肥230031
风云四号A星干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder,GIIRS)中波通道的最优选择是有效变分同化此资料的关键技术之一,能减少冗余信息所引起的变分同化和反演的不适定性。将通用的熵减法(Entropy Reduction,ER)用于GIIRS通道优选。此外,由于红外探测器观测容易受云影响,在变分同化GIIRS亮温资料时,需要进行云检测以获得晴空视场点或云参数信息。采用最小剩余法对GIIRS资料开展了云检测研究。该方法不仅能判识视场点是否有云,而且还能得到视场点的有效云量和有效云顶气压信息。但检测精度受不同通道组合的影响,因此基于台风“利奇马(2019)”资料进一步探讨了该影响。
高光谱GIIRS 通道选择 云检测 熵减法 台风“利奇马” hyperspectral GIIRS channel selection cloud detection entropy reduction method typhoon “Lekima” 
红外
2021, 42(7): 36
王根 1,2,*陈娇 1戴娟 3王悦 1
作者单位
摘要
1 安徽省气象台 大气科学与卫星遥感安徽省重点实验室,安徽 合肥230031
2 中亚大气科学研究中心,新疆 乌鲁木齐830002
3 安徽省气候中心,安徽 合肥230031
变分同化风云四号干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder,GIIRS)中波通道亮温偏差要求满足高斯分布,因此需进行GIIRS资料偏差订正。在Harris B A等人提出的“离线”法的基础上,发展了基于随机森林(Random Forest,RF)的GIIRS偏差订正方法。在具体执行过程中,基于风云四号多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,AGRI)云产品对GIIRS资料进行了云检测。试验结果表明,经过偏差订正的GIIRS亮温偏差满足高斯分布的假定。与“离线”法相比,RF法的订正效果更好。
高光谱GIIRS 偏差订正 “离线”法 随机森林 云检测 hyperspectral GIIRS bias correction "off-line" method random forest cloud detection 
红外
2021, 42(5): 39
作者单位
摘要
华东交通大学信息工程学院, 江西 南昌 330013
针对传统纳米天线结构存在频段窄、透射率低的问题, 设计了十字缝隙分形纳米天线结构。采用时域有限差分法计算了十字缝隙分形纳米天线结构的异常透射特性, 分析了均匀十字缝隙结构与其之间的透射特性差异, 并讨论了物理参数对十字缝隙分形纳米天线异常透射特性的影响及分形尺寸与非分形尺寸下的纳米天线透射谱变化关系。结果表明, 较于均匀十字缝隙结构, 十字缝隙分形结构实现了光的异常透射及全 2π透射光束相位调控, 尺寸更小型化, 半波宽(FWHM)更宽, 透射率更高, 最高可达 99.51%; 通过调整物理参数, 透射谱呈现出红移或蓝移的特性, 实现了透射谱的可控性; 同时, 当 h=50 nm时, FWHM约为 356 nm, 透射率仍高达 95.66%, 普遍高于传统结构; 并且在大入射角度(70°)下, 峰值透射率仍旧大于 74%。总之, 较于其他纳米天线结构, 十字缝隙分形纳米天线具有宽频、可控可调、结构更微型化等特点, 且实现了光的异常透射。
纳米天线设计 十字缝隙分形纳米天线 表面等离激元共振 时域有限差分法 光学异常透射 nano-antenna design cross-slots fractal nano-antenna surface plasmon resonance finite-difference time-domain method extraordinary optical transmission 
光电工程
2020, 47(6): 190422
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,安徽 合肥 230031
2 中国气象局气象干部培训学院安徽分院,安徽 合肥 230061
大气中有机成分种类繁多,结构复杂,有机酸作为大气环境各相中含量最丰富的有机物种之一备受关注,最近的实验研究表明,部分芳香族 有机酸能够促进硫酸-水团簇的成核及生长。理论计算也表明在有机酸的存在下,一些小分子有机酸与硫酸通过氢键的相互作用形成非均 相的团簇降低了成核壁垒,从而促进团簇的形成,对新粒子的成核产生具有重要促进作用。鉴于有机酸对大气气溶胶成核机理研究具有重 要的意义,对其近些年在实验和理论上的进展进行了回顾,并对未来前景作了展望。
气溶胶 新粒子生成 有机酸 成核机理 团簇 aerosols new particle formation organic acid mechanism of nucleation cluster 
大气与环境光学学报
2018, 13(5): 355
作者单位
摘要
天津理工大学 电气电子工程学院 薄膜电子与通信器件重点实验室, 天津 300384
提出了一种基于复合光纤滤波器的在室温下稳定输出多波长掺铒光纤激光器, 该激光器由两个级联球状结构的马赫-增德尔干涉仪(MZI)和一个双折射光纤滤波器-Lyot滤波器组成。球状结构MZI是由光纤熔接机在一段单模光纤(SMF)放电设计而成的。Lyot双折射光纤滤波器是利用一段保偏光纤(PMF)和两个偏振控制器(PC)连接而成, 该结构可以诱导非线性偏振旋转效应和双折射光纤效应来抑制模式竞争产生多波长。Lyot滤波器和球状结构的MZI作为模式限制器件, 并且Lyot滤波器对级联球状结构MZI的透射谱进行调制, 其透射谱周期决定了复合滤波器结构的透射谱周期。在室温下, 该系统实现了边模抑制比约为40 dB的九个波长的同时激射, 且波长间隔约为0.68 nm, 与Lyot滤波器透射谱周期一致。为了验证输出波长的稳定性, 在2 h内, 每隔10 min观察输出的波长, 实验证明, 室温下中心波长输出功率的浮动小于0.67 dB。此外, 将两个球状结构MZI放置在高温炉上, 使其外界温度从30 ℃升至110 ℃时, 输出波长光谱的调谐范围可达到6.69 nm。
多波长光纤激光器 复合 两个球状结构MZI Lyot滤波器 可调谐 multiwavelength fiber laser compounded two spherical-shape structures MZI Lyot filter tunable 
红外与激光工程
2018, 47(1): 0105001
作者单位
摘要
1 中国农业大学 信息与电气工程学院, 北京 100083
2 中国农业大学 现代精细农业系统集成研究教育部重点实验室, 北京 100083
为了快速有效地提取作物行, 提出了基于机器视觉的农田作物行检测方法。图像预处理过程中, 用中心线检测算法代替垂直投影法获得作物行信息; 直线检测中提出了一种基于随机方法的新算法。该算法首先在由图像定位点构成的数据空间中随机选取两个不同点, 这两点决定一条直线; 然后在一定的距离容忍度下, 得到一个沿直线方向的条形区域, 并在此区域内搜索定位点的个数; 最后根据阈值规则, 判断该直线的真实性。针对大量不同生长时期、不同光照条件下麦田图像的处理, 结果表明, 一幅图像的处理时间约为120 ms, 能够快速准确地提取作物行。对比该算法与霍夫变换和随机霍夫变换, 证实了它具有节省内存、速度快、抗干扰等优点。
机器视觉 直线检测 随机方法 Hough变换 
光学学报
2009, 29(4): 1015

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!