光学 精密工程, 2020, 28 (2): 315, 网络出版: 2020-05-27   

基于准布儒斯特角法研究抛光过程中光学材料的表面质量

Study on surface quality of polished optical materials with quasi-Brewster angle method
作者单位
1 天津大学 精密测试技术及仪器国家重点实验室, 天津300072
2 中国船舶工业系统工程研究院, 北京 100094
3 天津津航技术物理研究所, 天津 300380
引用该论文

胡春光, 孙兆阳, 方子璇, 刘军, 张昊, 房丰洲. 基于准布儒斯特角法研究抛光过程中光学材料的表面质量[J]. 光学 精密工程, 2020, 28(2): 315.

HU Chun-guang, SUN Zhao-yang, FANG Zi-xuan, LIU Jun, ZHANG Hao, FANG Feng-zhou. Study on surface quality of polished optical materials with quasi-Brewster angle method[J]. Optics and Precision Engineering, 2020, 28(2): 315.

参考文献

[1] YUAN J L, LYU B H, HANG W, et al.. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 158-180.

[2] BLAINEAU P, ANDR D, LAHEURTE R, et al.. Subsurface mechanical damage during bound abrasive grinding of fused silica glass[J]. Applied Surface Science, 2015, 353: 764-773.

[3] WANG H R, CHEN H F, FU G L, et al.. Relationship between grinding process and the parameters of subsurface damage based on the image processing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9/10/11/12): 1707-1715.

[4] FANG F Z, XU F F. Recent advances in micro/nano-cutting: effect of tool edge and material properties[J]. Nanomanufacturing and Metrology, 2018, 1(1): 4-31.

[5] YIN J F, BAI Q, ZHANG B. Methods for detection of subsurface damage: a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 41.

[6] FEIT M, RUBENCHIK A. Influence of subsurface cracks on laser-induced surface damage[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2004, 5273: 264-273.

[7] CHENG J, CHEN M J, LIAO W, et al.. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal [J]. Optics Express, 2014, 22(23): 28740-28755.

[8] GAO X, FENG G Y, ZHAI L L, et al.. Effect of subsurface impurities of fused silica on laser-induced damage probability [J]. Optical Engineering, 2014, 53(2): 026101.

[9] BUDE J, CARR C W, MILLER P E, et al.. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 2017, 25(10): 11414-11435.

[10] NAUPORT J, AMBARD C, BERCEGOL H, et al.. Optimizing fused silica polishing processes for 351 nm high power laser application[C].Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers. Proc SPIE 7132, Laser-Induced Damage in Optical Materials: 2008, Boulder, Colorado, USA, 2008: 71321I.

[11] WU H Z, ROBERTS S G, MBUS G, et al.. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites[J]. Acta Materialia, 2003, 51(1): 149-163.

[12] 朱楠楠, 朱永伟, 李军, 等. 铌酸锂晶体的研磨亚表面损伤深度[J]. 光学 精密工程, 2015, 23(12): 3387-3394.

    ZHU N N, ZHU Y W, LI J, et al.. Subsurface damage depth of lithium niobate crystal in lapping[J]. Opt. Precision Eng., 2015, 23(12): 3387-3394.(in Chinese)

[13] 刘颖, 刘正坤, 邱克强, 等. 大尺寸熔石英采样光栅的研究进展[J]. 光学 精密工程, 2016, 24(12): 2896-2901.

    LIU Y, LIU ZH K, QIU K Q, et al.. Advances in large-aperture beam sampling gratings[J]. Opt. Precision Eng., 2016, 24(12): 2896-2901.(in Chinese)

[14] NEAUPORT J, AMBARD C, CORMONT P, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques [J]. Optics Express, 2009, 17(22): 20448-20456.

[15] BERTUSSI B, CORMONT P, PALMIER S, et al.. Initiation of laser induced damage sites in fused silica optical components[J]. Optics Express, 2009, 17(14): 11469-11479.

[16] WU X P, GAO W R, HE Y, et al.. Quantitative measurement of subsurface damage with self-referenced spectral domain optical coherence tomography [J]. Optical Materials Express, 2017, 7(11): 3919-3933.

[17] EVANS C J, PAUL E, DORNFELD D, et al.. Material removal mechanisms in lapping and polishing[J]. CIRP Annals, 2003, 52(2): 611-633.

[18] PAL R K, GARG H, KARAR V. Material removal characteristics of full aperture optical polishing process[J]. Machining Science and Technology, 2017, 21(4): 493-525.

[19] LIAO W L, DAI Y F, LIU Z Z, et al.. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering[J]. Optics Express, 2016, 24(4): 4247-4257.

[20] WANG J, MAIER R L. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique[J]. Applied Optics, 2006, 45(22): 5621-5628.

[21] MA B, SHEN Z X, HE P F, et al.. Subsurface quality of polished SiO2 surface evaluated by quasi-Brewster angle technique[J]. Optik, 2011, 122(16): 1418-1422.

[22] ELFALLAGH F, INKSON B J. 3D analysis of crack morphologies in silicate glass using FIB tomography[J]. Journal of the European Ceramic Society, 2009, 29(1): 47-52.

[23] WU H Z, ROBERTS S G, MBUS G, et al.. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.% SiC nanocomposites[J]. Acta Materialia, 2003, 51(1): 149-163.

[24] MENAPACE J A, DAVIS P J, STEELE W A, et al.. MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[C]. Laser-Induced Damage in Optical Materials: 2005. International Society for Optics and Photonics, 2006, 5991: 599103.

[25] YIN J F, BAI Q, ZHANG B. Methods for detection of subsurface damage: a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 41.

[26] LEE Y. Evaluating subsurface damage in optical glasses[J]. Journal of the European Optical Society Rapid Publications, 2011, 6: 11001.

[27] WANG J, MAIER R L, BRUNING J H. Surface characterization of optically polished CaF2 crystal by quasi-Brewster-angle technique[C]. Optical Science and Technology, SPIE′s 48th Annual Meeting. Proc SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, San Diego, California, USA, 2003: 106-114.

[28] WANG J, VANKERKHOVE S, SCHREIBER H. Evaluation of coated and uncoated CaF2 optics by variable angle spectroscopic ellipsometry[J]. Thin Solid Films, 2011, 519(9): 2881-2884.

胡春光, 孙兆阳, 方子璇, 刘军, 张昊, 房丰洲. 基于准布儒斯特角法研究抛光过程中光学材料的表面质量[J]. 光学 精密工程, 2020, 28(2): 315. HU Chun-guang, SUN Zhao-yang, FANG Zi-xuan, LIU Jun, ZHANG Hao, FANG Feng-zhou. Study on surface quality of polished optical materials with quasi-Brewster angle method[J]. Optics and Precision Engineering, 2020, 28(2): 315.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!