光学 精密工程, 2020, 28 (2): 315, 网络出版: 2020-05-27   

基于准布儒斯特角法研究抛光过程中光学材料的表面质量

Study on surface quality of polished optical materials with quasi-Brewster angle method
作者单位
1 天津大学 精密测试技术及仪器国家重点实验室, 天津300072
2 中国船舶工业系统工程研究院, 北京 100094
3 天津津航技术物理研究所, 天津 300380
摘要
光学硬脆材料在机械加工过程中不可避免地形成表面/亚表面损伤, 对器件性能、使用寿命等具有至关重要的影响。相较于磨削、研磨两种前道工艺, 抛光阶段材料的损伤逐渐减少至极其微量的程度, 而最终残留的损伤将伴随材料的使用全周期, 研究抛光阶段表面质量的变化过程对掌握抛光的工艺质量十分必要, 但测量难度高。针对这一问题, 本文在总结抛光阶段损伤形式的基础上, 首先仿真分析了准布儒斯特角法检测表面质量的原理和优势, 随后以Nd∶GGG激光晶体为研究对象, 利用椭偏仪对不同抛光工艺下样品表面质量的变化进行了实验研究。通过与白光干涉法测量的表面形貌进行对比, 准布儒斯特角偏移量和相位角变化曲线斜率准确地反映了抛光过程中表面质量的变化, 展现了该方法的无损伤和高灵敏度特性, 以及辅助研究抛光工艺的可行性。最后, 对准布儒斯特角法在表面质量检测方面面临的问题进行了分析和展望。
Abstract
Surface damages of optical materials are inevitably introduced during machining processes. These damages heavily degrade the working performance and lifetime of optical materials-based production. Compared to the machining process of grinding, the art of polishing smoothly removes the damage layer of the sample; however, it is often difficult to ensure the complete removal of the damage layer. Therefore, to determinethe sample's surface quality during polishing periods is very necessary despite difficulties in the measurement technique.Here, we analyzed the typical surface structure of a polished sample and studied the measurement principle of the quasi-Brewster angle method. Simulations show the advantages of this approach to characterize the surface quality of a polished optical plate. As a demonstration, Nd∶GGG optical plates were polished with different processing time and tested carefully with a spectroscopic ellipsometer.Compared with the surface topography measured by white light interferometry, the quasi-Brewster angle offset and the slope of the phase-angle change curve accurately reflect the changes of surface quality during polishing, indicating that the quasi-Brewster angle method has a high sensitivity to the surface roughness and subsurface damages of the sample. This also implies the possibility of the proposed method in characterizing the changes of the surface quality under polishing progress. Finally, the future development trend of subsurface damage detection technology for polishing process.
参考文献

[1] YUAN J L, LYU B H, HANG W, et al.. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 158-180.

[2] BLAINEAU P, ANDR D, LAHEURTE R, et al.. Subsurface mechanical damage during bound abrasive grinding of fused silica glass[J]. Applied Surface Science, 2015, 353: 764-773.

[3] WANG H R, CHEN H F, FU G L, et al.. Relationship between grinding process and the parameters of subsurface damage based on the image processing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9/10/11/12): 1707-1715.

[4] FANG F Z, XU F F. Recent advances in micro/nano-cutting: effect of tool edge and material properties[J]. Nanomanufacturing and Metrology, 2018, 1(1): 4-31.

[5] YIN J F, BAI Q, ZHANG B. Methods for detection of subsurface damage: a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 41.

[6] FEIT M, RUBENCHIK A. Influence of subsurface cracks on laser-induced surface damage[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2004, 5273: 264-273.

[7] CHENG J, CHEN M J, LIAO W, et al.. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal [J]. Optics Express, 2014, 22(23): 28740-28755.

[8] GAO X, FENG G Y, ZHAI L L, et al.. Effect of subsurface impurities of fused silica on laser-induced damage probability [J]. Optical Engineering, 2014, 53(2): 026101.

[9] BUDE J, CARR C W, MILLER P E, et al.. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 2017, 25(10): 11414-11435.

[10] NAUPORT J, AMBARD C, BERCEGOL H, et al.. Optimizing fused silica polishing processes for 351 nm high power laser application[C].Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers. Proc SPIE 7132, Laser-Induced Damage in Optical Materials: 2008, Boulder, Colorado, USA, 2008: 71321I.

[11] WU H Z, ROBERTS S G, MBUS G, et al.. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites[J]. Acta Materialia, 2003, 51(1): 149-163.

[12] 朱楠楠, 朱永伟, 李军, 等. 铌酸锂晶体的研磨亚表面损伤深度[J]. 光学 精密工程, 2015, 23(12): 3387-3394.

    ZHU N N, ZHU Y W, LI J, et al.. Subsurface damage depth of lithium niobate crystal in lapping[J]. Opt. Precision Eng., 2015, 23(12): 3387-3394.(in Chinese)

[13] 刘颖, 刘正坤, 邱克强, 等. 大尺寸熔石英采样光栅的研究进展[J]. 光学 精密工程, 2016, 24(12): 2896-2901.

    LIU Y, LIU ZH K, QIU K Q, et al.. Advances in large-aperture beam sampling gratings[J]. Opt. Precision Eng., 2016, 24(12): 2896-2901.(in Chinese)

[14] NEAUPORT J, AMBARD C, CORMONT P, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques [J]. Optics Express, 2009, 17(22): 20448-20456.

[15] BERTUSSI B, CORMONT P, PALMIER S, et al.. Initiation of laser induced damage sites in fused silica optical components[J]. Optics Express, 2009, 17(14): 11469-11479.

[16] WU X P, GAO W R, HE Y, et al.. Quantitative measurement of subsurface damage with self-referenced spectral domain optical coherence tomography [J]. Optical Materials Express, 2017, 7(11): 3919-3933.

[17] EVANS C J, PAUL E, DORNFELD D, et al.. Material removal mechanisms in lapping and polishing[J]. CIRP Annals, 2003, 52(2): 611-633.

[18] PAL R K, GARG H, KARAR V. Material removal characteristics of full aperture optical polishing process[J]. Machining Science and Technology, 2017, 21(4): 493-525.

[19] LIAO W L, DAI Y F, LIU Z Z, et al.. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering[J]. Optics Express, 2016, 24(4): 4247-4257.

[20] WANG J, MAIER R L. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique[J]. Applied Optics, 2006, 45(22): 5621-5628.

[21] MA B, SHEN Z X, HE P F, et al.. Subsurface quality of polished SiO2 surface evaluated by quasi-Brewster angle technique[J]. Optik, 2011, 122(16): 1418-1422.

[22] ELFALLAGH F, INKSON B J. 3D analysis of crack morphologies in silicate glass using FIB tomography[J]. Journal of the European Ceramic Society, 2009, 29(1): 47-52.

[23] WU H Z, ROBERTS S G, MBUS G, et al.. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.% SiC nanocomposites[J]. Acta Materialia, 2003, 51(1): 149-163.

[24] MENAPACE J A, DAVIS P J, STEELE W A, et al.. MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[C]. Laser-Induced Damage in Optical Materials: 2005. International Society for Optics and Photonics, 2006, 5991: 599103.

[25] YIN J F, BAI Q, ZHANG B. Methods for detection of subsurface damage: a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 41.

[26] LEE Y. Evaluating subsurface damage in optical glasses[J]. Journal of the European Optical Society Rapid Publications, 2011, 6: 11001.

[27] WANG J, MAIER R L, BRUNING J H. Surface characterization of optically polished CaF2 crystal by quasi-Brewster-angle technique[C]. Optical Science and Technology, SPIE′s 48th Annual Meeting. Proc SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, San Diego, California, USA, 2003: 106-114.

[28] WANG J, VANKERKHOVE S, SCHREIBER H. Evaluation of coated and uncoated CaF2 optics by variable angle spectroscopic ellipsometry[J]. Thin Solid Films, 2011, 519(9): 2881-2884.

胡春光, 孙兆阳, 方子璇, 刘军, 张昊, 房丰洲. 基于准布儒斯特角法研究抛光过程中光学材料的表面质量[J]. 光学 精密工程, 2020, 28(2): 315. HU Chun-guang, SUN Zhao-yang, FANG Zi-xuan, LIU Jun, ZHANG Hao, FANG Feng-zhou. Study on surface quality of polished optical materials with quasi-Brewster angle method[J]. Optics and Precision Engineering, 2020, 28(2): 315.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!